Objective Quality Assessment of Screen Content Images by Uncertainty Weighting

In this paper, we propose a novel full-reference objective quality assessment metric for screen content images (SCIs) by structure features and uncertainty weighting (SFUW). The input SCI is first divided into textual and pictorial regions. The visual quality of textual regions is estimated based on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 4 vom: 16. Apr., Seite 2016-2017
1. Verfasser: Fang, Yuming (VerfasserIn)
Weitere Verfasser: Yan, Jiebin, Liu, Jiaying, Wang, Shiqi, Li, Qiaohong, Guo, Zongming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM269066373
003 DE-627
005 20231224223837.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2669840  |2 doi 
028 5 2 |a pubmed24n0896.xml 
035 |a (DE-627)NLM269066373 
035 |a (NLM)28212084 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang, Yuming  |e verfasserin  |4 aut 
245 1 0 |a Objective Quality Assessment of Screen Content Images by Uncertainty Weighting 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a novel full-reference objective quality assessment metric for screen content images (SCIs) by structure features and uncertainty weighting (SFUW). The input SCI is first divided into textual and pictorial regions. The visual quality of textual regions is estimated based on perceptual structural similarity, where the gradient information is adopted as the structural feature. To predict the visual quality of pictorial regions in SCIs, we extract the structural features and luminance features for similarity computation between the reference and distorted pictorial patches. To obtain the final visual quality of SCI, we design an uncertainty weighting method by perceptual theories to fuse the visual quality of textual and pictorial regions effectively. Experimental results show that the proposed SFUW can obtain better performance of visual quality prediction for SCIs than other existing ones 
650 4 |a Journal Article 
700 1 |a Yan, Jiebin  |e verfasserin  |4 aut 
700 1 |a Liu, Jiaying  |e verfasserin  |4 aut 
700 1 |a Wang, Shiqi  |e verfasserin  |4 aut 
700 1 |a Li, Qiaohong  |e verfasserin  |4 aut 
700 1 |a Guo, Zongming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 4 vom: 16. Apr., Seite 2016-2017  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:4  |g day:16  |g month:04  |g pages:2016-2017 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2669840  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 4  |b 16  |c 04  |h 2016-2017