Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning

In multi-instance learning (MIL), the relations among instances in a bag convey important contextual information in many applications. Previous studies on MIL either ignore such relations or simply model them with a fixed graph structure so that the overall performance inevitably degrades in complex...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 12 vom: 16. Dez., Seite 2554-2560
1. Verfasser: Li, Bing (VerfasserIn)
Weitere Verfasser: Yuan, Chunfeng, Xiong, Weihua, Hu, Weiming, Peng, Houwen, Ding, Xinmiao, Maybank, Steve
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM269066349
003 DE-627
005 20231224223837.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2669303  |2 doi 
028 5 2 |a pubmed24n0896.xml 
035 |a (DE-627)NLM269066349 
035 |a (NLM)28212079 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Bing  |e verfasserin  |4 aut 
245 1 0 |a Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.12.2018 
500 |a Date Revised 17.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In multi-instance learning (MIL), the relations among instances in a bag convey important contextual information in many applications. Previous studies on MIL either ignore such relations or simply model them with a fixed graph structure so that the overall performance inevitably degrades in complex environments. To address this problem, this paper proposes a novel multi-view multi-instance learning algorithm (MIL) that combines multiple context structures in a bag into a unified framework. The novel aspects are: (i) we propose a sparse -graph model that can generate different graphs with different parameters to represent various context relations in a bag, (ii) we propose a multi-view joint sparse representation that integrates these graphs into a unified framework for bag classification, and (iii) we propose a multi-view dictionary learning algorithm to obtain a multi-view graph dictionary that considers cues from all views simultaneously to improve the discrimination of the MIL. Experiments and analyses in many practical applications prove the effectiveness of the M IL 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yuan, Chunfeng  |e verfasserin  |4 aut 
700 1 |a Xiong, Weihua  |e verfasserin  |4 aut 
700 1 |a Hu, Weiming  |e verfasserin  |4 aut 
700 1 |a Peng, Houwen  |e verfasserin  |4 aut 
700 1 |a Ding, Xinmiao  |e verfasserin  |4 aut 
700 1 |a Maybank, Steve  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 12 vom: 16. Dez., Seite 2554-2560  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:12  |g day:16  |g month:12  |g pages:2554-2560 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2669303  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 12  |b 16  |c 12  |h 2554-2560