|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM269066349 |
003 |
DE-627 |
005 |
20231224223837.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2017.2669303
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0896.xml
|
035 |
|
|
|a (DE-627)NLM269066349
|
035 |
|
|
|a (NLM)28212079
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Bing
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 17.12.2018
|
500 |
|
|
|a Date Revised 17.12.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a In multi-instance learning (MIL), the relations among instances in a bag convey important contextual information in many applications. Previous studies on MIL either ignore such relations or simply model them with a fixed graph structure so that the overall performance inevitably degrades in complex environments. To address this problem, this paper proposes a novel multi-view multi-instance learning algorithm (MIL) that combines multiple context structures in a bag into a unified framework. The novel aspects are: (i) we propose a sparse -graph model that can generate different graphs with different parameters to represent various context relations in a bag, (ii) we propose a multi-view joint sparse representation that integrates these graphs into a unified framework for bag classification, and (iii) we propose a multi-view dictionary learning algorithm to obtain a multi-view graph dictionary that considers cues from all views simultaneously to improve the discrimination of the MIL. Experiments and analyses in many practical applications prove the effectiveness of the M IL
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Yuan, Chunfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiong, Weihua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Weiming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Houwen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ding, Xinmiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Maybank, Steve
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 39(2017), 12 vom: 16. Dez., Seite 2554-2560
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2017
|g number:12
|g day:16
|g month:12
|g pages:2554-2560
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2017.2669303
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2017
|e 12
|b 16
|c 12
|h 2554-2560
|