Person Re-Identification by Camera Correlation Aware Feature Augmentation

The challenge of person re-identification (re-id) is to match individual images of the same person captured by different non-overlapping camera views against significant and unknown cross-view feature distortion. While a large number of distance metric/subspace learning models have been developed fo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 2 vom: 16. Feb., Seite 392-408
1. Verfasser: Chen, Ying-Cong (VerfasserIn)
Weitere Verfasser: Zhu, Xiatian, Zheng, Wei-Shi, Lai, Jian-Huang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM269020373
003 DE-627
005 20231224223744.0
007 cr uuu---uuuuu
008 231224s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2666805  |2 doi 
028 5 2 |a pubmed24n0896.xml 
035 |a (DE-627)NLM269020373 
035 |a (NLM)28207383 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Ying-Cong  |e verfasserin  |4 aut 
245 1 0 |a Person Re-Identification by Camera Correlation Aware Feature Augmentation 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.01.2019 
500 |a Date Revised 30.01.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The challenge of person re-identification (re-id) is to match individual images of the same person captured by different non-overlapping camera views against significant and unknown cross-view feature distortion. While a large number of distance metric/subspace learning models have been developed for re-id, the cross-view transformations they learned are view-generic and thus potentially less effective in quantifying the feature distortion inherent to each camera view. Learning view-specific feature transformations for re-id (i.e., view-specific re-id), an under-studied approach, becomes an alternative resort for this problem. In this work, we formulate a novel view-specific person re-identification framework from the feature augmentation point of view, called Camera coR relation Aware Feature augmenTation (CRAFT). Specifically, CRAFT performs cross-view adaptation by automatically measuring camera correlation from cross-view visual data distribution and adaptively conducting feature augmentation to transform the original features into a new adaptive space. Through our augmentation framework, view-generic learning algorithms can be readily generalized to learn and optimize view-specific sub-models whilst simultaneously modelling view-generic discrimination information. Therefore, our framework not only inherits the strength of view-generic model learning but also provides an effective way to take into account view specific characteristics. Our CRAFT framework can be extended to jointly learn view-specific feature transformations for person re-id across a large network with more than two cameras, a largely under-investigated but realistic re-id setting. Additionally, we present a domain-generic deep person appearance representation which is designed particularly to be towards view invariant for facilitating cross-view adaptation by CRAFT. We conducted extensively comparative experiments to validate the superiority and advantages of our proposed framework over state-of-the-art competitors on contemporary challenging person re-id datasets 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhu, Xiatian  |e verfasserin  |4 aut 
700 1 |a Zheng, Wei-Shi  |e verfasserin  |4 aut 
700 1 |a Lai, Jian-Huang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 2 vom: 16. Feb., Seite 392-408  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:2  |g day:16  |g month:02  |g pages:392-408 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2666805  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 2  |b 16  |c 02  |h 392-408