Variation in whole DNA methylation in red maple (Acer rubrum) populations from a mining region : association with metal contamination and cation exchange capacity (CEC) in podzolic soils

Although a number of publications have provided convincing evidence that abiotic stresses such as drought and high salinity are involved in DNA methylation reports on the effects of metal contamination, pH, and cation exchange on DNA modifications are limited. The main objective of the present study...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 26(2017), 3 vom: 01. Apr., Seite 405-414
1. Verfasser: Kalubi, K N (VerfasserIn)
Weitere Verfasser: Mehes-Smith, M, Spiers, G, Omri, A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article Acer rubrum Bioavailable metal contamination levels Cation exchange capacity (CEC) DNA methylation Northern Ontario Cations Soil Soil Pollutants
Beschreibung
Zusammenfassung:Although a number of publications have provided convincing evidence that abiotic stresses such as drought and high salinity are involved in DNA methylation reports on the effects of metal contamination, pH, and cation exchange on DNA modifications are limited. The main objective of the present study is to determine the relationship between metal contamination and Cation exchange capacity (CEC) on whole DNA modifications. Metal analysis confirms that nickel and copper are the main contaminants in sampled sites within the Greater Sudbury Region (Ontario, Canada) and liming has increased soil pH significantly even after 30 years following dolomitic limestone applications. The estimated CEC values varied significantly among sites, ranging between 1.8 and 10.5 cmol(+) kg-1, with a strong relationship being observed between CEC and pH (r = 0.96**). Cation exchange capacity, significantly lower in highly metal contaminated sites compared to both reference and less contaminated sites, was higher in the higher organic matter limed compared to unlimed sites. There was a significant variation in the level of cytosine methylation among the metal-contaminated sites. Significant and strong negative correlations between [5mdC]/[dG] and bioavailable nickel (r = -0.71**) or copper (r = -0.72**) contents were observed. The analysis of genomic DNA for adenine methylation in this study showed a very low level of [6N-mdA]/dT] in Acer rubrum plants analyzed ranging from 0 to 0.08%. Significant and very strong positive correlation was observed between [6N-mdA]/dT] and soil bioavailable nickel (r = 0.78**) and copper (r = 0.88**) content. This suggests that the increased bioavailable metal levels associated with contamination by nickel and copper particulates are associated with cytosine and adenine methylation
Beschreibung:Date Completed 20.07.2017
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-017-1773-8