How Chlamydomonas handles nitrate and the nitric oxide cycle
© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 68(2017), 10 vom: 01. Mai, Seite 2593-2602 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Review Research Support, Non-U.S. Gov't Chlamydomonas NO cycle nitrate reductase. nitric oxide Algal Proteins Nitrites Nitric Oxide mehr... |
Zusammenfassung: | © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. The green alga Chlamydomonas is a valuable model system capable of assimilating different forms of nitrogen (N). Nitrate (NO3-) has a relevant role in plant-like organisms, first as a nitrogen source for growth and second as a signalling molecule. Several modules are necessary for Chlamydomonas to handle nitrate, including transporters, nitrate reductase (NR), nitrite reductase (NiR), GS/GOGAT enzymes for ammonium assimilation, and regulatory protein(s). Transporters provide a first step for influx/efflux, homeostasis, and sensing of nitrate; and NIT2 is the key transcription factor (RWP-RK) for mediating the nitrate-dependent activation of a number of genes. Here, we review how NR participates in the cycle NO3- →NO2- →NO →NO3-. NR uses the partner protein amidoxime-reducing component/nitric oxide-forming nitrite reductase (ARC/NOFNiR) for the conversion of nitrite (NO2-) into nitric oxide (NO). It also uses the truncated haemoglobin THB1 in the conversion of nitric oxide to nitrate. Nitric oxide is a negative signal for nitrate assimilation; it inhibits the activity and expression of high-affinity nitrate/nitrite transporters and NR. During this cycle, the positive signal of nitrate is transformed into the negative signal of nitric oxide, which can then be converted back into nitrate. Thus, NR is back in the spotlight as a strategic regulator of the nitric oxide cycle and the nitrate assimilation pathway |
---|---|
Beschreibung: | Date Completed 01.06.2018 Date Revised 11.06.2018 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erw507 |