Enhancement of struvite pellets crystallization in a full-scale plant using an industrial grade magnesium product

A full-scale struvite crystallization system was operated for the treatment of the centrate obtained from the sludge anaerobic digester in a municipal wastewater treatment plant. Additionally, the feasibility of an industrial grade Mg(OH)2 as a cheap magnesium and alkali source was also investigated...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 75(2017), 3-4 vom: 17. Feb., Seite 609-618
1. Verfasser: Crutchik, D (VerfasserIn)
Weitere Verfasser: Morales, N, Vázquez-Padín, J R, Garrido, J M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Phosphates Sewage Waste Water Water Pollutants Struvite AW3EJL1462 Magnesium Hydroxide NBZ3QY004S
Beschreibung
Zusammenfassung:A full-scale struvite crystallization system was operated for the treatment of the centrate obtained from the sludge anaerobic digester in a municipal wastewater treatment plant. Additionally, the feasibility of an industrial grade Mg(OH)2 as a cheap magnesium and alkali source was also investigated. The struvite crystallization plant was operated for two different periods: period I, in which an influent with low phosphate concentration (34.0 mg P·L-1) was fed to the crystallization plant; and period II, in which an influent with higher phosphate concentration (68.0 mg P·L-1) was used. A high efficiency of phosphorus recovery by struvite crystallization was obtained, even when the effluent treated had a high level of alkalinity. Phosphorus recovery percentage was around 77%, with a phosphate concentration in the effluent between 10.0 and 30.0 mg P·L-1. The experiments gained struvite pellets of 0.5-5.0 mm size. Moreover, the consumption of Mg(OH)2 was estimated at 1.5 mol Mg added·mol P recovered-1. Thus, industrial grade Mg(OH)2 can be an economical alternative as magnesium and alkali sources for struvite crystallization at industrial scale
Beschreibung:Date Completed 26.06.2017
Date Revised 07.12.2022
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2016.527