Enhancement of struvite pellets crystallization in a full-scale plant using an industrial grade magnesium product
A full-scale struvite crystallization system was operated for the treatment of the centrate obtained from the sludge anaerobic digester in a municipal wastewater treatment plant. Additionally, the feasibility of an industrial grade Mg(OH)2 as a cheap magnesium and alkali source was also investigated...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 75(2017), 3-4 vom: 17. Feb., Seite 609-618 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Phosphates Sewage Waste Water Water Pollutants Struvite AW3EJL1462 Magnesium Hydroxide NBZ3QY004S |
Zusammenfassung: | A full-scale struvite crystallization system was operated for the treatment of the centrate obtained from the sludge anaerobic digester in a municipal wastewater treatment plant. Additionally, the feasibility of an industrial grade Mg(OH)2 as a cheap magnesium and alkali source was also investigated. The struvite crystallization plant was operated for two different periods: period I, in which an influent with low phosphate concentration (34.0 mg P·L-1) was fed to the crystallization plant; and period II, in which an influent with higher phosphate concentration (68.0 mg P·L-1) was used. A high efficiency of phosphorus recovery by struvite crystallization was obtained, even when the effluent treated had a high level of alkalinity. Phosphorus recovery percentage was around 77%, with a phosphate concentration in the effluent between 10.0 and 30.0 mg P·L-1. The experiments gained struvite pellets of 0.5-5.0 mm size. Moreover, the consumption of Mg(OH)2 was estimated at 1.5 mol Mg added·mol P recovered-1. Thus, industrial grade Mg(OH)2 can be an economical alternative as magnesium and alkali sources for struvite crystallization at industrial scale |
---|---|
Beschreibung: | Date Completed 26.06.2017 Date Revised 07.12.2022 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2016.527 |