Protein tyrosine nitration in plants : Present knowledge, computational prediction and future perspectives

Copyright © 2017 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 113(2017) vom: 15. Apr., Seite 56-63
1. Verfasser: Kolbert, Zsuzsanna (VerfasserIn)
Weitere Verfasser: Feigl, Gábor, Bordé, Ádám, Molnár, Árpád, Erdei, László
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Review Arabidopsis Computational prediction GPS-YNO(2) Plant Tyrosine nitration iNitro-tyr Nitrates Plant Proteins mehr... Proteome Nitric Oxide 31C4KY9ESH Tyrosine 42HK56048U
Beschreibung
Zusammenfassung:Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Nitric oxide (NO) and related molecules (reactive nitrogen species) regulate diverse physiological processes mainly through posttranslational modifications such as protein tyrosine nitration (PTN). PTN is a covalent and specific modification of tyrosine (Tyr) residues resulting in altered protein structure and function. In the last decade, great efforts have been made to reveal candidate proteins, target Tyr residues and functional consequences of nitration in plants. This review intends to evaluate the accumulated knowledge about the biochemical mechanism, the structural and functional consequences and the selectivity of plants' protein nitration and also about the decomposition or conversion of nitrated proteins. At the same time, this review emphasizes yet unanswered or uncertain questions such as the reversibility/irreversibility of tyrosine nitration, the involvement of proteasomes in the removal of nitrated proteins or the effect of nitration on Tyr phosphorylation. The different NO producing systems of algae and higher plants raise the possibility of diversely regulated protein nitration. Therefore studying PTN from an evolutionary point of view would enrich our present understanding with novel aspects. Plant proteomic research can be promoted by the application of computational prediction tools such as GPS-YNO2 and iNitro-Tyr software. Using the reference Arabidopsis proteome, Authors performed in silico analysis of tyrosine nitration in order to characterize plant tyrosine nitroproteome. Nevertheless, based on the common results of the present prediction and previous experiments the most likely nitrated proteins were selected thus recommending candidates for detailed future research
Beschreibung:Date Completed 27.07.2017
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2017.01.028