Underwater Image Restoration Based on Image Blurriness and Light Absorption

Underwater images often suffer from color distortion and low contrast, because light is scattered and absorbed when traveling through water. Such images with different color tones can be shot in various lighting conditions, making restoration and enhancement difficult. We propose a depth estimation...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 4 vom: 26. Apr., Seite 1579-1594
1. Verfasser: Peng, Yan-Tsung (VerfasserIn)
Weitere Verfasser: Cosman, Pamela C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268817081
003 DE-627
005 20231224223346.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2663846  |2 doi 
028 5 2 |a pubmed24n0896.xml 
035 |a (DE-627)NLM268817081 
035 |a (NLM)28182556 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peng, Yan-Tsung  |e verfasserin  |4 aut 
245 1 0 |a Underwater Image Restoration Based on Image Blurriness and Light Absorption 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Underwater images often suffer from color distortion and low contrast, because light is scattered and absorbed when traveling through water. Such images with different color tones can be shot in various lighting conditions, making restoration and enhancement difficult. We propose a depth estimation method for underwater scenes based on image blurriness and light absorption, which can be used in the image formation model (IFM) to restore and enhance underwater images. Previous IFM-based image restoration methods estimate scene depth based on the dark channel prior or the maximum intensity prior. These are frequently invalidated by the lighting conditions in underwater images, leading to poor restoration results. The proposed method estimates underwater scene depth more accurately. Experimental results on restoring real and synthesized underwater images demonstrate that the proposed method outperforms other IFM-based underwater image restoration methods 
650 4 |a Journal Article 
700 1 |a Cosman, Pamela C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 4 vom: 26. Apr., Seite 1579-1594  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:4  |g day:26  |g month:04  |g pages:1579-1594 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2663846  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 4  |b 26  |c 04  |h 1579-1594