Multi-Dimensional Sparse Models

Traditional synthesis/analysis sparse representation models signals in a one dimensional (1D) way, in which a multidimensional (MD) signal is converted into a 1D vector. 1D modeling cannot sufficiently handle MD signals of high dimensionality in limited computational resources and memory usage, as b...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 1 vom: 26. Jan., Seite 163-178
1. Verfasser: Qi, Na (VerfasserIn)
Weitere Verfasser: Shi, Yunhui, Sun, Xiaoyan, Wang, Jingdong, Yin, Baocai, Gao, Junbin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM268817022
003 DE-627
005 20231224223346.0
007 cr uuu---uuuuu
008 231224s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2663423  |2 doi 
028 5 2 |a pubmed24n0896.xml 
035 |a (DE-627)NLM268817022 
035 |a (NLM)28182553 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qi, Na  |e verfasserin  |4 aut 
245 1 0 |a Multi-Dimensional Sparse Models 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.12.2018 
500 |a Date Revised 20.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Traditional synthesis/analysis sparse representation models signals in a one dimensional (1D) way, in which a multidimensional (MD) signal is converted into a 1D vector. 1D modeling cannot sufficiently handle MD signals of high dimensionality in limited computational resources and memory usage, as breaking the data structure and inherently ignores the diversity of MD signals (tensors). We utilize the multilinearity of tensors to establish the redundant basis of the space of multi linear maps with the sparsity constraint, and further propose MD synthesis/analysis sparse models to effectively and efficiently represent MD signals in their original form. The dimensional features of MD signals are captured by a series of dictionaries simultaneously and collaboratively. The corresponding dictionary learning algorithms and unified MD signal restoration formulations are proposed. The effectiveness of the proposed models and dictionary learning algorithms is demonstrated through experiments on MD signals denoising, image super-resolution and texture classification. Experiments show that the proposed MD models outperform state-of-the-art 1D models in terms of signal representation quality, computational overhead, and memory storage. Moreover, our proposed MD sparse models generalize the 1D sparse models and are flexible and adaptive to both homogeneous and inhomogeneous properties of MD signals 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Shi, Yunhui  |e verfasserin  |4 aut 
700 1 |a Sun, Xiaoyan  |e verfasserin  |4 aut 
700 1 |a Wang, Jingdong  |e verfasserin  |4 aut 
700 1 |a Yin, Baocai  |e verfasserin  |4 aut 
700 1 |a Gao, Junbin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 1 vom: 26. Jan., Seite 163-178  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:1  |g day:26  |g month:01  |g pages:163-178 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2663423  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 1  |b 26  |c 01  |h 163-178