The Manhattan Frame Model-Manhattan World Inference in the Space of Surface Normals

Objects and structures within man-made environments typically exhibit a high degree of organization in the form of orthogonal and parallel planes. Traditional approaches utilize these regularities via the restrictive, and rather local, Manhattan World (MW) assumption which posits that every plane is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 1 vom: 03. Jan., Seite 235-249
1. Verfasser: Straub, Julian (VerfasserIn)
Weitere Verfasser: Freifeld, Oren, Rosman, Guy, Leonard, John J, Fisher, John W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM268704740
003 DE-627
005 20231224223135.0
007 cr uuu---uuuuu
008 231224s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2662686  |2 doi 
028 5 2 |a pubmed24n0895.xml 
035 |a (DE-627)NLM268704740 
035 |a (NLM)28166490 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Straub, Julian  |e verfasserin  |4 aut 
245 1 4 |a The Manhattan Frame Model-Manhattan World Inference in the Space of Surface Normals 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.12.2018 
500 |a Date Revised 20.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Objects and structures within man-made environments typically exhibit a high degree of organization in the form of orthogonal and parallel planes. Traditional approaches utilize these regularities via the restrictive, and rather local, Manhattan World (MW) assumption which posits that every plane is perpendicular to one of the axes of a single coordinate system. The aforementioned regularities are especially evident in the surface normal distribution of a scene where they manifest as orthogonally-coupled clusters. This motivates the introduction of the Manhattan-Frame (MF) model which captures the notion of an MW in the surface normals space, the unit sphere, and two probabilistic MF models over this space. First, for a single MF we propose novel real-time MAP inference algorithms, evaluate their performance and their use in drift-free rotation estimation. Second, to capture the complexity of real-world scenes at a global scale, we extend the MF model to a probabilistic mixture of Manhattan Frames (MMF). For MMF inference we propose a simple MAP inference algorithm and an adaptive Markov-Chain Monte-Carlo sampling algorithm with Metropolis-Hastings split/merge moves that let us infer the unknown number of mixture components. We demonstrate the versatility of the MMF model and inference algorithm across several scales of man-made environments 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Freifeld, Oren  |e verfasserin  |4 aut 
700 1 |a Rosman, Guy  |e verfasserin  |4 aut 
700 1 |a Leonard, John J  |e verfasserin  |4 aut 
700 1 |a Fisher, John W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 1 vom: 03. Jan., Seite 235-249  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:1  |g day:03  |g month:01  |g pages:235-249 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2662686  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 1  |b 03  |c 01  |h 235-249