Curvature Filters Efficiently Reduce Certain Variational Energies
In image processing, the rapid approximate solution of variational problems involving generic data-fitting terms is often of practical relevance, for example in real-time applications. Variational solvers based on diffusion schemes or the Euler-Lagrange equations are too slow and restricted in the t...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 4 vom: 31. Apr., Seite 1786-1798 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | In image processing, the rapid approximate solution of variational problems involving generic data-fitting terms is often of practical relevance, for example in real-time applications. Variational solvers based on diffusion schemes or the Euler-Lagrange equations are too slow and restricted in the types of data-fitting terms. Here, we present a filter-based approach to reduce variational energies that contain generic data-fitting terms, but are restricted to specific regularizations. Our approach is based on reducing the regularization part of the variational energy, while guaranteeing non-increasing total energy. This is applicable to regularization-dominated models, where the data-fitting energy initially increases, while the regularization energy initially decreases. We present fast discrete filters for regularizers based on Gaussian curvature, mean curvature, and total variation. These pixel-local filters can be used to rapidly reduce the energy of the full model. We prove the convergence of the resulting iterative scheme in a greedy sense, and we show several experiments to demonstrate applications in image-processing problems involving regularization-dominated variational models |
---|---|
Beschreibung: | Date Completed 30.07.2018 Date Revised 30.07.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2017.2658954 |