Robust ImageGraph : Rank-Level Feature Fusion for Image Search

Recently, feature fusion has demonstrated its effectiveness in image search. However, bad features and inappropriate parameters usually bring about false positive images, i.e., outliers, leading to inferior performance. Therefore, a major challenge of fusion scheme is how to be robust to outliers. T...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 7 vom: 31. Juli, Seite 3128-3141
1. Verfasser: Liu, Ziqiong (VerfasserIn)
Weitere Verfasser: Wang, Shengjin, Zheng, Liang, Tian, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268503060
003 DE-627
005 20231224222801.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2660244  |2 doi 
028 5 2 |a pubmed24n0895.xml 
035 |a (DE-627)NLM268503060 
035 |a (NLM)28141521 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Ziqiong  |e verfasserin  |4 aut 
245 1 0 |a Robust ImageGraph  |b Rank-Level Feature Fusion for Image Search 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, feature fusion has demonstrated its effectiveness in image search. However, bad features and inappropriate parameters usually bring about false positive images, i.e., outliers, leading to inferior performance. Therefore, a major challenge of fusion scheme is how to be robust to outliers. Towards this goal, this paper proposes a rank-level framework for robust feature fusion. First, we define Rank Distance to measure the relevance of images at rank level. Based on it, Bayes similarity is introduced to evaluate the retrieval quality of individual features, through which true matches tend to obtain higher weight than outliers. Then, we construct the directed ImageGraph to encode the relationship of images. Each image is connected to its K nearest neighbors with an edge, and the edge is weighted by Bayes similarity. Multiple rank lists resulted from different methods are merged via ImageGraph. Furthermore, on the fused ImageGraph, local ranking is performed to re-order the initial rank lists. It aims at local optimization, and thus is more robust to global outliers. Extensive experiments on four benchmark data sets validate the effectiveness of our method. Besides, the proposed method outperforms two popular fusion schemes, and the results are competitive to the state-of-the-art 
650 4 |a Journal Article 
700 1 |a Wang, Shengjin  |e verfasserin  |4 aut 
700 1 |a Zheng, Liang  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 7 vom: 31. Juli, Seite 3128-3141  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:7  |g day:31  |g month:07  |g pages:3128-3141 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2660244  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 7  |b 31  |c 07  |h 3128-3141