|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM268458472 |
003 |
DE-627 |
005 |
20231224222703.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.6b04574
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0894.xml
|
035 |
|
|
|a (DE-627)NLM268458472
|
035 |
|
|
|a (NLM)28135096
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hughes, Erik A B
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Biologically Analogous Calcium Phosphate Tubes from a Chemical Garden
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.05.2018
|
500 |
|
|
|a Date Revised 07.05.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Calcium phosphate (CaPO4) tubes with features comparable to mineralized biological microstructures, such as Haversian canals, were grown from a calcium gel/phosphate solution chemical garden system. A significant difference in gel mass in response to high and low solute phosphate equivalent environments existed within 30 min of solution layering upon gel (p = 0.0067), suggesting that the nature of advective movement between gel and solution is dependent on the solution concentration. The transport of calcium cations (Ca2+) and phosphate anions (PO43-) was quantified and changes in pH were monitored to explain the preferential formation of tubes within a PO43- concentration range of 0.5-1.25 M. Ingress from the anionic solution phase into the gel followed by the liberation of Ca2+ ions from the gel was found to be essential for acquiring self-assembled tubular CaPO4 structures. Tube analysis by scanning electron microscopy (SEM), X-ray diffraction (XRD), and micro X-ray florescence (μ-XRF) revealed hydroxyapatite (HA, Ca10(PO4)6(OH)2) and dicalcium phosphate dihydrate (DCPD, CaHPO4·2H2O) phases organized in a hierarchical manner. Notably, the tubule diameters ranged from 100 to 150 μm, an ideal size for the permeation of vasculature in biological hard tissue
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Williams, Richard L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cox, Sophie C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Grover, Liam M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 33(2017), 8 vom: 28. Feb., Seite 2059-2067
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2017
|g number:8
|g day:28
|g month:02
|g pages:2059-2067
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.6b04574
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2017
|e 8
|b 28
|c 02
|h 2059-2067
|