Motion-Adaptive Depth Superresolution

Multi-modal sensing is increasingly becoming important in a number of applications, providing new capabilities and processing challenges. In this paper, we explore the benefit of combining a low-resolution depth sensor with a high-resolution optical video sensor, in order to provide a high-resolutio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 4 vom: 04. Apr., Seite 1723-1731
1. Verfasser: Kamilov, Ulugbek S (VerfasserIn)
Weitere Verfasser: Boufounos, Petros T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268401241
003 DE-627
005 20231224222602.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2658944  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268401241 
035 |a (NLM)28129158 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kamilov, Ulugbek S  |e verfasserin  |4 aut 
245 1 0 |a Motion-Adaptive Depth Superresolution 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-modal sensing is increasingly becoming important in a number of applications, providing new capabilities and processing challenges. In this paper, we explore the benefit of combining a low-resolution depth sensor with a high-resolution optical video sensor, in order to provide a high-resolution depth map of the scene. We propose a new formulation that is able to incorporate temporal information and exploit the motion of objects in the video to significantly improve the results over existing methods. In particular, our approach exploits the space-time redundancy in the depth and intensity using motion-adaptive low-rank regularization. We provide experiments to validate our approach and confirm that the quality of the estimated high-resolution depth is improved substantially. Our approach can be a first component in systems using vision techniques that rely on high-resolution depth information 
650 4 |a Journal Article 
700 1 |a Boufounos, Petros T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 4 vom: 04. Apr., Seite 1723-1731  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:4  |g day:04  |g month:04  |g pages:1723-1731 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2658944  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 4  |b 04  |c 04  |h 1723-1731