Automated first-principles mapping for phase-change materials

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 38(2017), 9 vom: 05. Apr., Seite 620-628
1. Verfasser: Esser, Marc (VerfasserIn)
Weitere Verfasser: Maintz, Stefan, Dronskowski, Richard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't electronic-structure theory first-principles ionicity material design orbital mixing
Beschreibung
Zusammenfassung:© 2017 Wiley Periodicals, Inc.
Plotting materials on bi-coordinate maps according to physically meaningful descriptors has a successful tradition in computational solid-state science spanning more than four decades. Equipped with new ab initio techniques introduced in this work, we generate an improved version of the treasure map for phase-change materials (PCMs) as introduced previously by Lencer et al. which, other than before, charts all industrially used PCMs correctly. Furthermore, we suggest seven new PCM candidates, namely SiSb4 Te7 , Si2 Sb2 Te5 , SiAs2 Te4 , PbAs2 Te4 , SiSb2 Te4 , Sn2 As2 Te5 , and PbAs4 Te7 , to be used as synthetic targets. To realize aforementioned maps based on orbital mixing (or "hybridization") and ionicity coordinates, structural information was first included into an ab initio numerical descriptor for sp3 orbital mixing and then generalized beyond high-symmetry structures. In addition, a simple, yet powerful quantum-mechanical ionization measure also including structural information was introduced. Taken together, these tools allow for (automatically) generating materials maps solely relying on first-principles calculations. © 2017 Wiley Periodicals, Inc
Beschreibung:Date Completed 26.11.2018
Date Revised 26.11.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.24724