Kinetic Accessibility of Porous Material Adsorption Sites Studied through the Lattice Boltzmann Method

We present here a computational model based on the lattice Boltzmann scheme to investigate the accessibility of active adsorption sites in hierarchical porous materials to adsorbates in a flowing liquid. By studying the transport and adsorption of tracers after they enter the pore space of the virtu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 33(2017), 6 vom: 14. Feb., Seite 1405-1411
1. Verfasser: Vanson, Jean-Mathieu (VerfasserIn)
Weitere Verfasser: Coudert, François-Xavier, Klotz, Michaela, Boutin, Anne
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:We present here a computational model based on the lattice Boltzmann scheme to investigate the accessibility of active adsorption sites in hierarchical porous materials to adsorbates in a flowing liquid. By studying the transport and adsorption of tracers after they enter the pore space of the virtual sample, we characterize their kinetics as they pass through the pore space and adsorb on the solid-liquid interface. The model is validated on simple geometries with a known analytical solution. We then use it to investigate the influence of regular grooves or disordered roughness on the walls of a slit pore geometry, looking at the impact on adsorption and transport. In particular, we highlight the importance of adsorption site accessibility, which depends on the shape and connectivity of the pore space as well as the fluid flow profile and velocity
Beschreibung:Date Completed 23.04.2018
Date Revised 23.04.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.6b04472