Kinetic Accessibility of Porous Material Adsorption Sites Studied through the Lattice Boltzmann Method
We present here a computational model based on the lattice Boltzmann scheme to investigate the accessibility of active adsorption sites in hierarchical porous materials to adsorbates in a flowing liquid. By studying the transport and adsorption of tracers after they enter the pore space of the virtu...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 33(2017), 6 vom: 14. Feb., Seite 1405-1411 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | We present here a computational model based on the lattice Boltzmann scheme to investigate the accessibility of active adsorption sites in hierarchical porous materials to adsorbates in a flowing liquid. By studying the transport and adsorption of tracers after they enter the pore space of the virtual sample, we characterize their kinetics as they pass through the pore space and adsorb on the solid-liquid interface. The model is validated on simple geometries with a known analytical solution. We then use it to investigate the influence of regular grooves or disordered roughness on the walls of a slit pore geometry, looking at the impact on adsorption and transport. In particular, we highlight the importance of adsorption site accessibility, which depends on the shape and connectivity of the pore space as well as the fluid flow profile and velocity |
---|---|
Beschreibung: | Date Completed 23.04.2018 Date Revised 23.04.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.6b04472 |