Image Denoising via Bandwise Adaptive Modeling and Regularization Exploiting Nonlocal Similarity

This paper proposes a new image denoising algorithm based on adaptive signal modeling and regularization. It improves the quality of images by regularizing each image patch using bandwise distribution modeling in transform domain. Instead of using a global model for all the patches in an image, it e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 12 vom: 15. Dez., Seite 5793-5805
1. Verfasser: Ruiqin Xiong (VerfasserIn)
Weitere Verfasser: Hangfan Liu, Xinfeng Zhang, Jian Zhang, Siwei Ma, Feng Wu, Wen Gao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268254508
003 DE-627
005 20231224222319.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2614160  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268254508 
035 |a (NLM)28114070 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ruiqin Xiong  |e verfasserin  |4 aut 
245 1 0 |a Image Denoising via Bandwise Adaptive Modeling and Regularization Exploiting Nonlocal Similarity 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper proposes a new image denoising algorithm based on adaptive signal modeling and regularization. It improves the quality of images by regularizing each image patch using bandwise distribution modeling in transform domain. Instead of using a global model for all the patches in an image, it employs content-dependent adaptive models to address the non-stationarity of image signals and also the diversity among different transform bands. The distribution model is adaptively estimated for each patch individually. It varies from one patch location to another and also varies for different bands. In particular, we consider the estimated distribution to have non-zero expectation. To estimate the expectation and variance parameters for every band of a particular patch, we exploit the nonlocal correlation in image to collect a set of highly similar patches as the data samples to form the distribution. Irrelevant patches are excluded so that such adaptively learned model is more accurate than a global one. The image is ultimately restored via bandwise adaptive soft-thresholding, based on a Laplacian approximation of the distribution of similar-patch group transform coefficients. Experimental results demonstrate that the proposed scheme outperforms several state-of-the-art denoising methods in both the objective and the perceptual qualities 
650 4 |a Journal Article 
700 1 |a Hangfan Liu  |e verfasserin  |4 aut 
700 1 |a Xinfeng Zhang  |e verfasserin  |4 aut 
700 1 |a Jian Zhang  |e verfasserin  |4 aut 
700 1 |a Siwei Ma  |e verfasserin  |4 aut 
700 1 |a Feng Wu  |e verfasserin  |4 aut 
700 1 |a Wen Gao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 12 vom: 15. Dez., Seite 5793-5805  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:12  |g day:15  |g month:12  |g pages:5793-5805 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2614160  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 12  |b 15  |c 12  |h 5793-5805