Sparse Representation-Based Open Set Recognition

We propose a generalized Sparse Representation-based Classification (SRC) algorithm for open set recognition where not all classes presented during testing are known during training. The SRC algorithm uses class reconstruction errors for classification. As most of the discriminative information for...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 8 vom: 15. Aug., Seite 1690-1696
Auteur principal: Zhang, He (Auteur)
Autres auteurs: Patel, Vishal M
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM268254427
003 DE-627
005 20250221044920.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2613924  |2 doi 
028 5 2 |a pubmed25n0894.xml 
035 |a (DE-627)NLM268254427 
035 |a (NLM)28114060 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, He  |e verfasserin  |4 aut 
245 1 0 |a Sparse Representation-Based Open Set Recognition 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.11.2018 
500 |a Date Revised 08.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a generalized Sparse Representation-based Classification (SRC) algorithm for open set recognition where not all classes presented during testing are known during training. The SRC algorithm uses class reconstruction errors for classification. As most of the discriminative information for open set recognition is hidden in the tail part of the matched and sum of non-matched reconstruction error distributions, we model the tail of those two error distributions using the statistical Extreme Value Theory (EVT). Then we simplify the open set recognition problem into a set of hypothesis testing problems. The confidence scores corresponding to the tail distributions of a novel test sample are then fused to determine its identity. The effectiveness of the proposed method is demonstrated using four publicly available image and object classification datasets and it is shown that this method can perform significantly better than many competitive open set recognition algorithms 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Patel, Vishal M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 8 vom: 15. Aug., Seite 1690-1696  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:8  |g day:15  |g month:08  |g pages:1690-1696 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2613924  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 8  |b 15  |c 08  |h 1690-1696