Generalizing Mumford-Shah Model for Multiphase Piecewise Smooth Image Segmentation

This paper concerns multiphase piecewise smooth image segmentation with intensity inhomogeneities. Traditional methods based on the Mumford-Shah (MS) model require solving complicated diffusion equations evolving in irregular subdomains, leading to significant difficulties in efficient and accurate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 2 vom: 15. Feb., Seite 942-952
1. Verfasser: Ying Gu (VerfasserIn)
Weitere Verfasser: Wei Xiong, Li-Lian Wang, Jierong Cheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM268254044
003 DE-627
005 20250221044918.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2636450  |2 doi 
028 5 2 |a pubmed25n0894.xml 
035 |a (DE-627)NLM268254044 
035 |a (NLM)28114019 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ying Gu  |e verfasserin  |4 aut 
245 1 0 |a Generalizing Mumford-Shah Model for Multiphase Piecewise Smooth Image Segmentation 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper concerns multiphase piecewise smooth image segmentation with intensity inhomogeneities. Traditional methods based on the Mumford-Shah (MS) model require solving complicated diffusion equations evolving in irregular subdomains, leading to significant difficulties in efficient and accurate segmentation, especially in multiphase scenarios. In this paper, we propose a general framework to modify the MS model by using smoothing operators that can avoid the complicated implementation and inaccurate segmentation of traditional approaches. A detailed analysis connecting the smoothing operators and the diffusion equations is given to justify the modification. In addition, we present an efficient algorithm based on the direct augmented Lagrangian method, which requires fewer parameters than the commonly used augmented Lagrangian method. Typically, the smoothing operator in the general model is chosen to be Gaussian kernel, the bilateral kernel, and the directional diffusion kernel, respectively. Ample numerical results are provided to demonstrate the efficiency and accuracy of the modified model and the proposed minimization algorithm through various comparisons with existing approaches 
650 4 |a Journal Article 
700 1 |a Wei Xiong  |e verfasserin  |4 aut 
700 1 |a Li-Lian Wang  |e verfasserin  |4 aut 
700 1 |a Jierong Cheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 2 vom: 15. Feb., Seite 942-952  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:2  |g day:15  |g month:02  |g pages:942-952 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2636450  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 2  |b 15  |c 02  |h 942-952