STC : A Simple to Complex Framework for Weakly-Supervised Semantic Segmentation

Recently, significant improvement has been made on semantic object segmentation due to the development of deep convolutional neural networks (DCNNs). Training such a DCNN usually relies on a large number of images with pixel-level segmentation masks, and annotating these images is very costly in ter...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 11 vom: 15. Nov., Seite 2314-2320
1. Verfasser: Yunchao Wei (VerfasserIn)
Weitere Verfasser: Xiaodan Liang, Yunpeng Chen, Xiaohui Shen, Ming-Ming Cheng, Jiashi Feng, Yao Zhao, Shuicheng Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM268253897
003 DE-627
005 20231224222319.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2636150  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268253897 
035 |a (NLM)28114002 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yunchao Wei  |e verfasserin  |4 aut 
245 1 0 |a STC  |b A Simple to Complex Framework for Weakly-Supervised Semantic Segmentation 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, significant improvement has been made on semantic object segmentation due to the development of deep convolutional neural networks (DCNNs). Training such a DCNN usually relies on a large number of images with pixel-level segmentation masks, and annotating these images is very costly in terms of both finance and human effort. In this paper, we propose a simple to complex (STC) framework in which only image-level annotations are utilized to learn DCNNs for semantic segmentation. Specifically, we first train an initial segmentation network called Initial-DCNN with the saliency maps of simple images (i.e., those with a single category of major object(s) and clean background). These saliency maps can be automatically obtained by existing bottom-up salient object detection techniques, where no supervision information is needed. Then, a better network called Enhanced-DCNN is learned with supervision from the predicted segmentation masks of simple images based on the Initial-DCNN as well as the image-level annotations. Finally, more pixel-level segmentation masks of complex images (two or more categories of objects with cluttered background), which are inferred by using Enhanced-DCNN and image-level annotations, are utilized as the supervision information to learn the Powerful-DCNN for semantic segmentation. Our method utilizes 40K simple images from Flickr.com and 10K complex images from PASCAL VOC for step-wisely boosting the segmentation network. Extensive experimental results on PASCAL VOC 2012 segmentation benchmark well demonstrate the superiority of the proposed STC framework compared with other state-of-the-arts 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Xiaodan Liang  |e verfasserin  |4 aut 
700 1 |a Yunpeng Chen  |e verfasserin  |4 aut 
700 1 |a Xiaohui Shen  |e verfasserin  |4 aut 
700 1 |a Ming-Ming Cheng  |e verfasserin  |4 aut 
700 1 |a Jiashi Feng  |e verfasserin  |4 aut 
700 1 |a Yao Zhao  |e verfasserin  |4 aut 
700 1 |a Shuicheng Yan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 11 vom: 15. Nov., Seite 2314-2320  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:11  |g day:15  |g month:11  |g pages:2314-2320 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2636150  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 11  |b 15  |c 11  |h 2314-2320