Principal Graph and Structure Learning Based on Reversed Graph Embedding

Many scientific datasets are of high dimension, and the analysis usually requires retaining the most important structures of data. Principal curve is a widely used approach for this purpose. However, many existing methods work only for data with structures that are mathematically formulated by curve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 11 vom: 15. Nov., Seite 2227-2241
1. Verfasser: Qi Mao (VerfasserIn)
Weitere Verfasser: Li Wang, Tsang, Ivor W, Yijun Sun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM268253889
003 DE-627
005 20231224222319.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2635657  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268253889 
035 |a (NLM)28114001 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qi Mao  |e verfasserin  |4 aut 
245 1 0 |a Principal Graph and Structure Learning Based on Reversed Graph Embedding 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 08.10.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many scientific datasets are of high dimension, and the analysis usually requires retaining the most important structures of data. Principal curve is a widely used approach for this purpose. However, many existing methods work only for data with structures that are mathematically formulated by curves, which is quite restrictive for real applications. A few methods can overcome the above problem, but they either require complicated human-made rules for a specific task with lack of adaption flexibility to different tasks, or cannot obtain explicit structures of data. To address these issues, we develop a novel principal graph and structure learning framework that captures the local information of the underlying graph structure based on reversed graph embedding. As showcases, models that can learn a spanning tree or a weighted undirected `1 graph are proposed, and a new learning algorithm is developed that learns a set of principal points and a graph structure from data, simultaneously. The new algorithm is simple with guaranteed convergence. We then extend the proposed framework to deal with large-scale data. Experimental results on various synthetic and six real world datasets show that the proposed method compares favorably with baselines and can uncover the underlying structure correctly 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Li Wang  |e verfasserin  |4 aut 
700 1 |a Tsang, Ivor W  |e verfasserin  |4 aut 
700 1 |a Yijun Sun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 11 vom: 15. Nov., Seite 2227-2241  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:11  |g day:15  |g month:11  |g pages:2227-2241 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2635657  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 11  |b 15  |c 11  |h 2227-2241