Tree-Structured Nuclear Norm Approximation with Applications to Robust Face Recognition

Structured sparsity, as an extension of standard sparsity, has shown the outstanding performance when dealing with some highly correlated variables in computer vision and pattern recognition. However, the traditional mixed (L1, L2) or (L1, L∞) group norm becomes weak in characterizing the internal s...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 12 vom: 15. Dez., Seite 5757-5767
Auteur principal: Luo, Lei (Auteur)
Autres auteurs: Chen, Liang, Yang, Jian, Qian, Jianjun, Zhang, Bob
Format: Article en ligne
Langue:English
Publié: 2016
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652 4500
001 NLM26825365X
003 DE-627
005 20250221044916.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2612885  |2 doi 
028 5 2 |a pubmed25n0894.xml 
035 |a (DE-627)NLM26825365X 
035 |a (NLM)28113977 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luo, Lei  |e verfasserin  |4 aut 
245 1 0 |a Tree-Structured Nuclear Norm Approximation with Applications to Robust Face Recognition 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Structured sparsity, as an extension of standard sparsity, has shown the outstanding performance when dealing with some highly correlated variables in computer vision and pattern recognition. However, the traditional mixed (L1, L2) or (L1, L∞) group norm becomes weak in characterizing the internal structure of each group since they cannot alleviate the correla-tions between variables. Recently, nuclear norm has been vali-dated to be useful for depicting a spatially structured matrix variable. It considers the global structure of the matrix variable but overlooks the local structure. To combine the advantages of structured sparsity and nuclear norm, this paper presents a tree-structured nuclear norm approximation (TSNA) model as-suming that the representation residual with tree-structured prior is a random matrix variable and follows a dependent matrix dis-tribution. The Extended Alternating Direction Method of Multi-pliers (EADMM) is utilized to solve the proposed model. An effi-cient bound condition based on the extended restricted isometry constants is provided to show the exact recovery of the proposed model under the given noisy case. In addition, TSNA is connected with some newest methods such as sparse representation based classifier (SRC), nuclear-L1 norm joint regression (NL1R) and nuclear norm based matrix regression (NMR), which can be re-garded as the special cases of TSNA. Experiments with face re-construction and recognition demonstrate the benefits of TSNA over other approaches 
650 4 |a Journal Article 
700 1 |a Chen, Liang  |e verfasserin  |4 aut 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
700 1 |a Qian, Jianjun  |e verfasserin  |4 aut 
700 1 |a Zhang, Bob  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 12 vom: 15. Dez., Seite 5757-5767  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:12  |g day:15  |g month:12  |g pages:5757-5767 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2612885  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 12  |b 15  |c 12  |h 5757-5767