Beyond Object Proposals : Random Crop Pooling for Multi-Label Image Recognition

Learning high-level image representations using object proposals has achieved remarkable success in multi-label image recognition. However, most object proposals provide merely coarse information about the objects, and only carefully selected proposals can be helpful for boosting the performance of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 12 vom: 15. Dez., Seite 5678-5688
1. Verfasser: Meng Wang (VerfasserIn)
Weitere Verfasser: Changzhi Luo, Richang Hong, Jinhui Tang, Jiashi Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268253617
003 DE-627
005 20231224222319.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2612829  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268253617 
035 |a (NLM)28113973 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Meng Wang  |e verfasserin  |4 aut 
245 1 0 |a Beyond Object Proposals  |b Random Crop Pooling for Multi-Label Image Recognition 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Learning high-level image representations using object proposals has achieved remarkable success in multi-label image recognition. However, most object proposals provide merely coarse information about the objects, and only carefully selected proposals can be helpful for boosting the performance of multi-label image recognition. In this paper, we propose an object-proposal-free framework for multi-label image recognition: random crop pooling (RCP). Basically, RCP performs stochastic scaling and cropping over images before feeding them to a standard convolutional neural network, which works quite well with a max-pooling operation for recognizing the complex contents of multi-label images. To better fit the multi-label image recognition task, we further develop a new loss function-the dynamic weighted Euclidean loss-for the training of the deep network. Our RCP approach is amazingly simple yet effective. It can achieve significantly better image recognition performance than the approaches using object proposals. Moreover, our adapted network can be easily trained in an end-to-end manner. Extensive experiments are conducted on two representative multi-label image recognition data sets (i.e., PASCAL VOC 2007 and PASCAL VOC 2012), and the results clearly demonstrate the superiority of our approach 
650 4 |a Journal Article 
700 1 |a Changzhi Luo  |e verfasserin  |4 aut 
700 1 |a Richang Hong  |e verfasserin  |4 aut 
700 1 |a Jinhui Tang  |e verfasserin  |4 aut 
700 1 |a Jiashi Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 12 vom: 15. Dez., Seite 5678-5688  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:12  |g day:15  |g month:12  |g pages:5678-5688 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2612829  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 12  |b 15  |c 12  |h 5678-5688