LEGO-MM : LEarning Structured Model by Probabilistic loGic Ontology Tree for MultiMedia

Recent advances in multimedia ontology have resulted in a number of concept models, e.g., large-scale concept for multimedia and Mediamill 101, which are accessible and public to other researchers. However, most current research effort still focuses on building new concepts from scratch, very few wo...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 1 vom: 15. Jan., Seite 196-207
Auteur principal: Jinhui Tang (Auteur)
Autres auteurs: Shiyu Chang, Guo-Jun Qi, Qi Tian, Yong Rui, Huang, Thomas S
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM268253609
003 DE-627
005 20250221044916.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2612825  |2 doi 
028 5 2 |a pubmed25n0894.xml 
035 |a (DE-627)NLM268253609 
035 |a (NLM)28113970 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jinhui Tang  |e verfasserin  |4 aut 
245 1 0 |a LEGO-MM  |b LEarning Structured Model by Probabilistic loGic Ontology Tree for MultiMedia 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent advances in multimedia ontology have resulted in a number of concept models, e.g., large-scale concept for multimedia and Mediamill 101, which are accessible and public to other researchers. However, most current research effort still focuses on building new concepts from scratch, very few work explores the appropriate method to construct new concepts upon the existing models already in the warehouse. To address this issue, we propose a new framework in this paper, termed LEarning Structured Model by Probabilistic loGic Ontology Tree for MultiM edia (LEGO 1 -MM), which can seamlessly integrate both the new target training examples and the existing primitive concept models to infer the more complex concept models. LEGO-MM treats the primitive concept models as the lego toy to potentially construct an unlimited vocabulary of new concepts. Specifically, we first formulate the logic operations to be the lego connectors to combine the existing concept models hierarchically in probabilistic logic ontology trees. Then, we incorporate new target training information simultaneously to efficiently disambiguate the underlying logic tree and correct the error propagation. Extensive experiments are conducted on a large vehicle domain data set from ImageNet. The results demonstrate that LEGO-MM has significantly superior performance over the existing state-of-the-art methods, which build new concept models from scratch 
650 4 |a Journal Article 
700 1 |a Shiyu Chang  |e verfasserin  |4 aut 
700 1 |a Guo-Jun Qi  |e verfasserin  |4 aut 
700 1 |a Qi Tian  |e verfasserin  |4 aut 
700 1 |a Yong Rui  |e verfasserin  |4 aut 
700 1 |a Huang, Thomas S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 1 vom: 15. Jan., Seite 196-207  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:26  |g year:2017  |g number:1  |g day:15  |g month:01  |g pages:196-207 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2612825  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 1  |b 15  |c 01  |h 196-207