|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM268253315 |
003 |
DE-627 |
005 |
20231224222318.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2016.2628581
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0894.xml
|
035 |
|
|
|a (DE-627)NLM268253315
|
035 |
|
|
|a (NLM)28113933
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yong Zhang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Data-Driven Synthesis of Cartoon Faces Using Different Styles
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a This paper presents a data-driven approach for automatically generating cartoon faces in different styles from a given portrait image. Our stylization pipeline consists of two steps: an offline analysis step to learn about how to select and compose facial components from the databases; a runtime synthesis step to generate the cartoon face by assembling parts from a database of stylized facial components. We propose an optimization framework that, for a given artistic style, simultaneously considers the desired image-cartoon relationships of the facial components and a proper adjustment of the image composition. We measure the similarity between facial components of the input image and our cartoon database via image feature matching, and introduce a probabilistic framework for modeling the relationships between cartoon facial components. We incorporate prior knowledge about image-cartoon relationships and the optimal composition of facial components extracted from a set of cartoon faces to maintain a natural, consistent, and attractive look of the results. We demonstrate generality and robustness of our approach by applying it to a variety of portrait images and compare our output with stylized results created by artists via a comprehensive user study
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Weiming Dong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chongyang Ma
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xing Mei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ke Li
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Feiyue Huang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bao-Gang Hu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deussen, Oliver
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 26(2017), 1 vom: 15. Jan., Seite 464-478
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:26
|g year:2017
|g number:1
|g day:15
|g month:01
|g pages:464-478
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2016.2628581
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2017
|e 1
|b 15
|c 01
|h 464-478
|