Data-Driven Synthesis of Cartoon Faces Using Different Styles

This paper presents a data-driven approach for automatically generating cartoon faces in different styles from a given portrait image. Our stylization pipeline consists of two steps: an offline analysis step to learn about how to select and compose facial components from the databases; a runtime syn...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 1 vom: 15. Jan., Seite 464-478
1. Verfasser: Yong Zhang (VerfasserIn)
Weitere Verfasser: Weiming Dong, Chongyang Ma, Xing Mei, Ke Li, Feiyue Huang, Bao-Gang Hu, Deussen, Oliver
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268253315
003 DE-627
005 20231224222318.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2628581  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268253315 
035 |a (NLM)28113933 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yong Zhang  |e verfasserin  |4 aut 
245 1 0 |a Data-Driven Synthesis of Cartoon Faces Using Different Styles 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a data-driven approach for automatically generating cartoon faces in different styles from a given portrait image. Our stylization pipeline consists of two steps: an offline analysis step to learn about how to select and compose facial components from the databases; a runtime synthesis step to generate the cartoon face by assembling parts from a database of stylized facial components. We propose an optimization framework that, for a given artistic style, simultaneously considers the desired image-cartoon relationships of the facial components and a proper adjustment of the image composition. We measure the similarity between facial components of the input image and our cartoon database via image feature matching, and introduce a probabilistic framework for modeling the relationships between cartoon facial components. We incorporate prior knowledge about image-cartoon relationships and the optimal composition of facial components extracted from a set of cartoon faces to maintain a natural, consistent, and attractive look of the results. We demonstrate generality and robustness of our approach by applying it to a variety of portrait images and compare our output with stylized results created by artists via a comprehensive user study 
650 4 |a Journal Article 
700 1 |a Weiming Dong  |e verfasserin  |4 aut 
700 1 |a Chongyang Ma  |e verfasserin  |4 aut 
700 1 |a Xing Mei  |e verfasserin  |4 aut 
700 1 |a Ke Li  |e verfasserin  |4 aut 
700 1 |a Feiyue Huang  |e verfasserin  |4 aut 
700 1 |a Bao-Gang Hu  |e verfasserin  |4 aut 
700 1 |a Deussen, Oliver  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 1 vom: 15. Jan., Seite 464-478  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:1  |g day:15  |g month:01  |g pages:464-478 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2628581  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 1  |b 15  |c 01  |h 464-478