Adaptive Nonlocal Sparse Representation for Dual-Camera Compressive Hyperspectral Imaging

Leveraging the compressive sensing (CS) theory, coded aperture snapshot spectral imaging (CASSI) provides an efficient solution to recover 3D hyperspectral data from a 2D measurement. The dual-camera design of CASSI, by adding an uncoded panchromatic measurement, enhances the reconstruction fidelity...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 10 vom: 15. Okt., Seite 2104-2111
1. Verfasser: Wang, Lizhi (VerfasserIn)
Weitere Verfasser: Xiong, Zhiwei, Shi, Guangming, Wu, Feng, Zeng, Wenjun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM26825219X
003 DE-627
005 20231224222317.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2621050  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM26825219X 
035 |a (NLM)28113743 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Lizhi  |e verfasserin  |4 aut 
245 1 0 |a Adaptive Nonlocal Sparse Representation for Dual-Camera Compressive Hyperspectral Imaging 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.11.2018 
500 |a Date Revised 23.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Leveraging the compressive sensing (CS) theory, coded aperture snapshot spectral imaging (CASSI) provides an efficient solution to recover 3D hyperspectral data from a 2D measurement. The dual-camera design of CASSI, by adding an uncoded panchromatic measurement, enhances the reconstruction fidelity while maintaining the snapshot advantage. In this paper, we propose an adaptive nonlocal sparse representation (ANSR) model to boost the performance of dual-camera compressive hyperspectral imaging (DCCHI). Specifically, the CS reconstruction problem is formulated as a 3D cube based sparse representation to make full use of the nonlocal similarity in both the spatial and spectral domains. Our key observation is that, the panchromatic image, besides playing the role of direct measurement, can be further exploited to help the nonlocal similarity estimation. Therefore, we design a joint similarity metric by adaptively combining the internal similarity within the reconstructed hyperspectral image and the external similarity within the panchromatic image. In this way, the fidelity of CS reconstruction is greatly enhanced. Both simulation and hardware experimental results show significant improvement of the proposed method over the state-of-the-art 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Xiong, Zhiwei  |e verfasserin  |4 aut 
700 1 |a Shi, Guangming  |e verfasserin  |4 aut 
700 1 |a Wu, Feng  |e verfasserin  |4 aut 
700 1 |a Zeng, Wenjun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 10 vom: 15. Okt., Seite 2104-2111  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:10  |g day:15  |g month:10  |g pages:2104-2111 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2621050  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 10  |b 15  |c 10  |h 2104-2111