|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM26825219X |
003 |
DE-627 |
005 |
20231224222317.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2016.2621050
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0894.xml
|
035 |
|
|
|a (DE-627)NLM26825219X
|
035 |
|
|
|a (NLM)28113743
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Lizhi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Adaptive Nonlocal Sparse Representation for Dual-Camera Compressive Hyperspectral Imaging
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.11.2018
|
500 |
|
|
|a Date Revised 23.11.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Leveraging the compressive sensing (CS) theory, coded aperture snapshot spectral imaging (CASSI) provides an efficient solution to recover 3D hyperspectral data from a 2D measurement. The dual-camera design of CASSI, by adding an uncoded panchromatic measurement, enhances the reconstruction fidelity while maintaining the snapshot advantage. In this paper, we propose an adaptive nonlocal sparse representation (ANSR) model to boost the performance of dual-camera compressive hyperspectral imaging (DCCHI). Specifically, the CS reconstruction problem is formulated as a 3D cube based sparse representation to make full use of the nonlocal similarity in both the spatial and spectral domains. Our key observation is that, the panchromatic image, besides playing the role of direct measurement, can be further exploited to help the nonlocal similarity estimation. Therefore, we design a joint similarity metric by adaptively combining the internal similarity within the reconstructed hyperspectral image and the external similarity within the panchromatic image. In this way, the fidelity of CS reconstruction is greatly enhanced. Both simulation and hardware experimental results show significant improvement of the proposed method over the state-of-the-art
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Xiong, Zhiwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Guangming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Feng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zeng, Wenjun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 39(2017), 10 vom: 15. Okt., Seite 2104-2111
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2017
|g number:10
|g day:15
|g month:10
|g pages:2104-2111
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2016.2621050
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2017
|e 10
|b 15
|c 10
|h 2104-2111
|