Convex Hull Aided Registration Method (CHARM)

Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 23(2017), 9 vom: 15. Sept., Seite 2042-2055
1. Verfasser: Fan, Jingfan (VerfasserIn)
Weitere Verfasser: Yang, Jian, Zhao, Yitian, Ai, Danni, Liu, Yonghuai, Wang, Ge, Wang, Yongtian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM268251045
003 DE-627
005 20250221044905.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2016.2602858  |2 doi 
028 5 2 |a pubmed25n0894.xml 
035 |a (DE-627)NLM268251045 
035 |a (NLM)28113589 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fan, Jingfan  |e verfasserin  |4 aut 
245 1 0 |a Convex Hull Aided Registration Method (CHARM) 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.11.2018 
500 |a Date Revised 15.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
700 1 |a Zhao, Yitian  |e verfasserin  |4 aut 
700 1 |a Ai, Danni  |e verfasserin  |4 aut 
700 1 |a Liu, Yonghuai  |e verfasserin  |4 aut 
700 1 |a Wang, Ge  |e verfasserin  |4 aut 
700 1 |a Wang, Yongtian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 23(2017), 9 vom: 15. Sept., Seite 2042-2055  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:23  |g year:2017  |g number:9  |g day:15  |g month:09  |g pages:2042-2055 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2016.2602858  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 9  |b 15  |c 09  |h 2042-2055