Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to Image Classification

This paper presents a novel image descriptor to effectively characterize the local, high-order image statistics. Our work is inspired by the Diffusion Tensor Imaging and the structure tensor method (or covariance descriptor), and motivated by popular distribution-based descriptors such as SIFT and H...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 4 vom: 15. Apr., Seite 803-817
1. Verfasser: Peihua Li (VerfasserIn)
Weitere Verfasser: Qilong Wang, Hui Zeng, Lei Zhang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM268250812
003 DE-627
005 20231224222316.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2560816  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268250812 
035 |a (NLM)28113542 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peihua Li  |e verfasserin  |4 aut 
245 1 0 |a Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to Image Classification 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.10.2018 
500 |a Date Revised 04.10.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a novel image descriptor to effectively characterize the local, high-order image statistics. Our work is inspired by the Diffusion Tensor Imaging and the structure tensor method (or covariance descriptor), and motivated by popular distribution-based descriptors such as SIFT and HoG. Our idea is to associate one pixel with a multivariate Gaussian distribution estimated in the neighborhood. The challenge lies in that the space of Gaussians is not a linear space but a Riemannian manifold. We show, for the first time to our knowledge, that the space of Gaussians can be equipped with a Lie group structure by defining a multiplication operation on this manifold, and that it is isomorphic to a subgroup of the upper triangular matrix group. Furthermore, we propose methods to embed this matrix group in the linear space, which enables us to handle Gaussians with Euclidean operations rather than complicated Riemannian operations. The resulting descriptor, called Local Log-Euclidean Multivariate Gaussian (L2EMG) descriptor, works well with low-dimensional and high-dimensional raw features. Moreover, our descriptor is a continuous function of features without quantization, which can model the first- and second-order statistics. Extensive experiments were conducted to evaluate thoroughly L2EMG, and the results showed that L2EMG is very competitive with state-of-the-art descriptors in image classification 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Qilong Wang  |e verfasserin  |4 aut 
700 1 |a Hui Zeng  |e verfasserin  |4 aut 
700 1 |a Lei Zhang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 4 vom: 15. Apr., Seite 803-817  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:4  |g day:15  |g month:04  |g pages:803-817 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2560816  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 4  |b 15  |c 04  |h 803-817