$L_0$ Regularized Stationary-Time Estimation for Crowd Analysis

In this paper, we tackle the problem of stationary crowd analysis which is as important as modeling mobile groups in crowd scenes and finds many important applications in crowd surveillance. Our key contribution is to propose a robust algorithm for estimating how long a foreground pixel becomes stat...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 5 vom: 15. Mai, Seite 981-994
Auteur principal: Shuai Yi (Auteur)
Autres auteurs: Xiaogang Wang, Cewu Lu, Jiaya Jia, Hongsheng Li
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM268250782
003 DE-627
005 20250221044904.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2560807  |2 doi 
028 5 2 |a pubmed25n0894.xml 
035 |a (DE-627)NLM268250782 
035 |a (NLM)28113539 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shuai Yi  |e verfasserin  |4 aut 
245 1 0 |a $L_0$ Regularized Stationary-Time Estimation for Crowd Analysis 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.10.2018 
500 |a Date Revised 18.10.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we tackle the problem of stationary crowd analysis which is as important as modeling mobile groups in crowd scenes and finds many important applications in crowd surveillance. Our key contribution is to propose a robust algorithm for estimating how long a foreground pixel becomes stationary. It is much more challenging than only subtracting background because failure at a single frame due to local movement of objects, lighting variation, and occlusion could lead to large errors on stationary-time estimation. To achieve robust and accurate estimation, sparse constraints along spatial and temporal dimensions are jointly added by mixed partials (which are second-order gradients) to shape a 3D stationary-time map. It is formulated as an L0 optimization problem. Besides background subtraction, it distinguishes among different foreground objects, which are close or overlapped in the spatio-temporal space by using a locally shared foreground codebook. The proposed technologies are further demonstrated through three applications. 1) Based on the results of stationary-time estimation, 12 descriptors are proposed to detect four types of stationary crowd activities. 2) The averaged stationary-time map is estimated to analyze crowd scene structures. 3) The result of stationary-time estimation is also used to study the influence of stationary crowd groups to traffic patterns 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Xiaogang Wang  |e verfasserin  |4 aut 
700 1 |a Cewu Lu  |e verfasserin  |4 aut 
700 1 |a Jiaya Jia  |e verfasserin  |4 aut 
700 1 |a Hongsheng Li  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 5 vom: 15. Mai, Seite 981-994  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:5  |g day:15  |g month:05  |g pages:981-994 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2560807  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 5  |b 15  |c 05  |h 981-994