Approximated and User Steerable tSNE for Progressive Visual Analytics

Progressive Visual Analytics aims at improving the interactivity in existing analytics techniques by means of visualization as well as interaction with intermediate results. One key method for data analysis is dimensionality reduction, for example, to produce 2D embeddings that can be visualized and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 23(2017), 7 vom: 15. Juli, Seite 1739-1752
1. Verfasser: Pezzotti, Nicola (VerfasserIn)
Weitere Verfasser: Lelieveldt, Boudewijn P F, Van Der Maaten, Laurens, Hollt, Thomas, Eisemann, Elmar, Vilanova, Anna
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268250197
003 DE-627
005 20231224222315.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2016.2570755  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268250197 
035 |a (NLM)28113434 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pezzotti, Nicola  |e verfasserin  |4 aut 
245 1 0 |a Approximated and User Steerable tSNE for Progressive Visual Analytics 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.10.2018 
500 |a Date Revised 31.10.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Progressive Visual Analytics aims at improving the interactivity in existing analytics techniques by means of visualization as well as interaction with intermediate results. One key method for data analysis is dimensionality reduction, for example, to produce 2D embeddings that can be visualized and analyzed efficiently. t-Distributed Stochastic Neighbor Embedding (tSNE) is a well-suited technique for the visualization of high-dimensional data. tSNE can create meaningful intermediate results but suffers from a slow initialization that constrains its application in Progressive Visual Analytics. We introduce a controllable tSNE approximation (A-tSNE), which trades off speed and accuracy, to enable interactive data exploration. We offer real-time visualization techniques, including a density-based solution and a Magic Lens to inspect the degree of approximation. With this feedback, the user can decide on local refinements and steer the approximation level during the analysis. We demonstrate our technique with several datasets, in a real-world research scenario and for the real-time analysis of high-dimensional streams to illustrate its effectiveness for interactive data analysis 
650 4 |a Journal Article 
700 1 |a Lelieveldt, Boudewijn P F  |e verfasserin  |4 aut 
700 1 |a Van Der Maaten, Laurens  |e verfasserin  |4 aut 
700 1 |a Hollt, Thomas  |e verfasserin  |4 aut 
700 1 |a Eisemann, Elmar  |e verfasserin  |4 aut 
700 1 |a Vilanova, Anna  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 23(2017), 7 vom: 15. Juli, Seite 1739-1752  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:7  |g day:15  |g month:07  |g pages:1739-1752 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2016.2570755  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 7  |b 15  |c 07  |h 1739-1752