Image Deblurring via Enhanced Low-Rank Prior

Low-rank matrix approximation has been successfully applied to numerous vision problems in recent years. In this paper, we propose a novel low-rank prior for blind image deblurring. Our key observation is that directly applying a simple low-rank model to a blurry input image significantly reduces th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 7 vom: 15. Juli, Seite 3426-3437
1. Verfasser: Wenqi Ren (VerfasserIn)
Weitere Verfasser: Xiaochun Cao, Jinshan Pan, Xiaojie Guo, Wangmeng Zuo, Ming-Hsuan Yang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268250162
003 DE-627
005 20231224222315.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2571062  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268250162 
035 |a (NLM)28113429 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wenqi Ren  |e verfasserin  |4 aut 
245 1 0 |a Image Deblurring via Enhanced Low-Rank Prior 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Low-rank matrix approximation has been successfully applied to numerous vision problems in recent years. In this paper, we propose a novel low-rank prior for blind image deblurring. Our key observation is that directly applying a simple low-rank model to a blurry input image significantly reduces the blur even without using any kernel information, while preserving important edge information. The same model can be used to reduce blur in the gradient map of a blurry input. Based on these properties, we introduce an enhanced prior for image deblurring by combining the low rank prior of similar patches from both the blurry image and its gradient map. We employ a weighted nuclear norm minimization method to further enhance the effectiveness of low-rank prior for image deblurring, by retaining the dominant edges and eliminating fine texture and slight edges in intermediate images, allowing for better kernel estimation. In addition, we evaluate the proposed enhanced low-rank prior for both the uniform and the non-uniform deblurring. Quantitative and qualitative experimental evaluations demonstrate that the proposed algorithm performs favorably against the state-of-the-art deblurring methods 
650 4 |a Journal Article 
700 1 |a Xiaochun Cao  |e verfasserin  |4 aut 
700 1 |a Jinshan Pan  |e verfasserin  |4 aut 
700 1 |a Xiaojie Guo  |e verfasserin  |4 aut 
700 1 |a Wangmeng Zuo  |e verfasserin  |4 aut 
700 1 |a Ming-Hsuan Yang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 7 vom: 15. Juli, Seite 3426-3437  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:7  |g day:15  |g month:07  |g pages:3426-3437 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2571062  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 7  |b 15  |c 07  |h 3426-3437