|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM268250162 |
003 |
DE-627 |
005 |
20231224222315.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2016.2571062
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0894.xml
|
035 |
|
|
|a (DE-627)NLM268250162
|
035 |
|
|
|a (NLM)28113429
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wenqi Ren
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Image Deblurring via Enhanced Low-Rank Prior
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Low-rank matrix approximation has been successfully applied to numerous vision problems in recent years. In this paper, we propose a novel low-rank prior for blind image deblurring. Our key observation is that directly applying a simple low-rank model to a blurry input image significantly reduces the blur even without using any kernel information, while preserving important edge information. The same model can be used to reduce blur in the gradient map of a blurry input. Based on these properties, we introduce an enhanced prior for image deblurring by combining the low rank prior of similar patches from both the blurry image and its gradient map. We employ a weighted nuclear norm minimization method to further enhance the effectiveness of low-rank prior for image deblurring, by retaining the dominant edges and eliminating fine texture and slight edges in intermediate images, allowing for better kernel estimation. In addition, we evaluate the proposed enhanced low-rank prior for both the uniform and the non-uniform deblurring. Quantitative and qualitative experimental evaluations demonstrate that the proposed algorithm performs favorably against the state-of-the-art deblurring methods
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Xiaochun Cao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jinshan Pan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiaojie Guo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wangmeng Zuo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ming-Hsuan Yang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 25(2016), 7 vom: 15. Juli, Seite 3426-3437
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:25
|g year:2016
|g number:7
|g day:15
|g month:07
|g pages:3426-3437
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2016.2571062
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 25
|j 2016
|e 7
|b 15
|c 07
|h 3426-3437
|