Defocus Map Estimation From a Single Image Based on Two-Parameter Defocus Model

Defocus map estimation (DME) is highly important in many computer vision applications. Nearly, all existing approaches for DME from a single image are based on a one-parameter defocus model, which does not allow for the variation of depth over edges. In this paper, a novel two-parameter model of def...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 12 vom: 15. Dez., Seite 5943-5956
1. Verfasser: Shaojun Liu (VerfasserIn)
Weitere Verfasser: Fei Zhou, Qingmin Liao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268249970
003 DE-627
005 20231224222315.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2617460  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268249970 
035 |a (NLM)28113397 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shaojun Liu  |e verfasserin  |4 aut 
245 1 0 |a Defocus Map Estimation From a Single Image Based on Two-Parameter Defocus Model 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Defocus map estimation (DME) is highly important in many computer vision applications. Nearly, all existing approaches for DME from a single image are based on a one-parameter defocus model, which does not allow for the variation of depth over edges. In this paper, a novel two-parameter model of defocused edges is proposed for DME from a single image. We can estimate the defocus amounts for each side of the edges through this proposed model, and the confidence that the edge is a pattern edge, where the depth remains the same over the edge, can be generated. Then, we modify the TV-L1 algorithm for structure-texture decomposition by taking advantage of this confidence to eliminate pattern edges while preserving structural ones. Finally, the defocus amounts estimated at the edge positions are used as initial values, and the structure component is employed as a guidance in the following Laplacian matting procedure to avoid the influence of pattern edges on the final defocus map. Experiment results show that the proposed method can effectively eliminate the influence of pattern edges compared with the state-of-art method. Furthermore, the estimated defocus map is feasible in applications of depth estimation and foreground/background segmentation 
650 4 |a Journal Article 
700 1 |a Fei Zhou  |e verfasserin  |4 aut 
700 1 |a Qingmin Liao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 12 vom: 15. Dez., Seite 5943-5956  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:12  |g day:15  |g month:12  |g pages:5943-5956 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2617460  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 12  |b 15  |c 12  |h 5943-5956