Sparse Representation for 3D Shape Estimation : A Convex Relaxation Approach

We investigate the problem of estimating the 3D shape of an object defined by a set of 3D landmarks, given their 2D correspondences in a single image. A successful approach to alleviating the reconstruction ambiguity is the 3D deformable shape model and a sparse representation is often used to captu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 8 vom: 15. Aug., Seite 1648-1661
1. Verfasser: Xiaowei Zhou (VerfasserIn)
Weitere Verfasser: Menglong Zhu, Leonardos, Spyridon, Daniilidis, Kostas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM268249768
003 DE-627
005 20231224222315.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2605097  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268249768 
035 |a (NLM)28113356 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiaowei Zhou  |e verfasserin  |4 aut 
245 1 0 |a Sparse Representation for 3D Shape Estimation  |b A Convex Relaxation Approach 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.11.2018 
500 |a Date Revised 08.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We investigate the problem of estimating the 3D shape of an object defined by a set of 3D landmarks, given their 2D correspondences in a single image. A successful approach to alleviating the reconstruction ambiguity is the 3D deformable shape model and a sparse representation is often used to capture complex shape variability. But the model inference is still challenging due to the nonconvexity in the joint optimization of shape and viewpoint. In contrast to prior work that relies on an alternating scheme whose solution depends on initialization, we propose a convex approach to addressing this challenge and develop an efficient algorithm to solve the proposed convex program. We further propose a robust model to handle gross errors in the 2D correspondences. We demonstrate the exact recovery property of the proposed method, the advantage compared to several nonconvex baselines and the applicability to recover 3D human poses and car models from single images 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Menglong Zhu  |e verfasserin  |4 aut 
700 1 |a Leonardos, Spyridon  |e verfasserin  |4 aut 
700 1 |a Daniilidis, Kostas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 8 vom: 15. Aug., Seite 1648-1661  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:8  |g day:15  |g month:08  |g pages:1648-1661 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2605097  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 8  |b 15  |c 08  |h 1648-1661