Deep Relative Tracking

Most existing tracking methods are direct trackers, which directly exploit foreground or/and background information for object appearance modeling and decide whether an image patch is target object or not. As a result, these trackers cannot perform well when target appearance changes heavily and bec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 4 vom: 15. Apr., Seite 1845-1858
1. Verfasser: Gao, Junyu (VerfasserIn)
Weitere Verfasser: Zhang, Tianzhu, Yang, Xiaoshan, Xu, Changsheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268249628
003 DE-627
005 20231224222314.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2656628  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268249628 
035 |a (NLM)28113343 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Junyu  |e verfasserin  |4 aut 
245 1 0 |a Deep Relative Tracking 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Most existing tracking methods are direct trackers, which directly exploit foreground or/and background information for object appearance modeling and decide whether an image patch is target object or not. As a result, these trackers cannot perform well when target appearance changes heavily and becomes different from its model. To deal with this issue, we propose a novel relative tracker, which can effectively exploit the relative relationship among image patches from both foreground and background for object appearance modeling. Different from direct trackers, the proposed relative tracker is robust to localize target object by use of the best image patch with the highest relative score to target appearance model. To model relative relationship among large-scale image patch pairs, we propose a novel and effective deep relative learning algorithm via Convolutional Neural Network. We test the proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that our method consistently outperforms state-of-the-art trackers due to the powerful capacity of the proposed deep relative model 
650 4 |a Journal Article 
700 1 |a Zhang, Tianzhu  |e verfasserin  |4 aut 
700 1 |a Yang, Xiaoshan  |e verfasserin  |4 aut 
700 1 |a Xu, Changsheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 4 vom: 15. Apr., Seite 1845-1858  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:4  |g day:15  |g month:04  |g pages:1845-1858 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2656628  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 4  |b 15  |c 04  |h 1845-1858