Noise Level Estimation for Natural Images Based on Scale-Invariant Kurtosis and Piecewise Stationarity
Noise level estimation is crucial in many image processing applications, such as blind image denoising. In this paper, we propose a novel noise level estimation approach for natural images by jointly exploiting the piecewise stationarity and a regular property of the kurtosis in bandpass domains. We...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 2 vom: 15. Feb., Seite 1017-1030 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Noise level estimation is crucial in many image processing applications, such as blind image denoising. In this paper, we propose a novel noise level estimation approach for natural images by jointly exploiting the piecewise stationarity and a regular property of the kurtosis in bandpass domains. We design a K-means-based algorithm to adaptively partition an image into a series of non-overlapping regions, each of whose clean versions is assumed to be associated with a constant, but unknown kurtosis throughout scales. The noise level estimation is then cast into a problem to optimally fit this new kurtosis model. In addition, we develop a rectification scheme to further reduce the estimation bias through noise injection mechanism. Extensive experimental results show that our method can reliably estimate the noise level for a variety of noise types, and outperforms some state-of-the-art techniques, especially for non-Gaussian noises |
---|---|
Beschreibung: | Date Revised 20.11.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2016.2639447 |