Selective Transfer Machine for Personalized Facial Expression Analysis

Automatic facial action unit (AU) and expression detection from videos is a long-standing problem. The problem is challenging in part because classifiers must generalize to previously unknown subjects that differ markedly in behavior and facial morphology (e.g., heavy versus delicate brows, smooth v...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 3 vom: 15. März, Seite 529-545
1. Verfasser: Wen-Sheng Chu (VerfasserIn)
Weitere Verfasser: De la Torre, Fernando, Cohn, Jeffrey F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268249083
003 DE-627
005 20231224222314.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2547397  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268249083 
035 |a (NLM)28113267 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wen-Sheng Chu  |e verfasserin  |4 aut 
245 1 0 |a Selective Transfer Machine for Personalized Facial Expression Analysis 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Automatic facial action unit (AU) and expression detection from videos is a long-standing problem. The problem is challenging in part because classifiers must generalize to previously unknown subjects that differ markedly in behavior and facial morphology (e.g., heavy versus delicate brows, smooth versus deeply etched wrinkles) from those on which the classifiers are trained. While some progress has been achieved through improvements in choices of features and classifiers, the challenge occasioned by individual differences among people remains. Person-specific classifiers would be a possible solution but for a paucity of training data. Sufficient training data for person-specific classifiers typically is unavailable. This paper addresses the problem of how to personalize a generic classifier without additional labels from the test subject. We propose a transductive learning method, which we refer to as a Selective Transfer Machine (STM), to personalize a generic classifier by attenuating person-specific mismatches. STM achieves this effect by simultaneously learning a classifier and re-weighting the training samples that are most relevant to the test subject. We compared STM to both generic classifiers and cross-domain learning methods on four benchmarks: CK+ [44], GEMEP-FERA [67], RUFACS [4] and GFT [57]. STM outperformed generic classifiers in all 
650 4 |a Journal Article 
700 1 |a De la Torre, Fernando  |e verfasserin  |4 aut 
700 1 |a Cohn, Jeffrey F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 3 vom: 15. März, Seite 529-545  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:3  |g day:15  |g month:03  |g pages:529-545 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2547397  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 3  |b 15  |c 03  |h 529-545