Learning Contextual Dependence With Convolutional Hierarchical Recurrent Neural Networks

Deep convolutional neural networks (CNNs) have shown their great success on image classification. CNNs mainly consist of convolutional and pooling layers, both of which are performed on local image areas without considering the dependence among different image regions. However, such dependence is ve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 7 vom: 15. Juli, Seite 2983-2996
1. Verfasser: Zuo, Zhen (VerfasserIn)
Weitere Verfasser: Shuai, Bing, Wang, Gang, Liu, Xiao, Wang, Xingxing, Wang, Bing, Chen, Yushi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268248397
003 DE-627
005 20231224222313.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2548241  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268248397 
035 |a (NLM)28113173 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zuo, Zhen  |e verfasserin  |4 aut 
245 1 0 |a Learning Contextual Dependence With Convolutional Hierarchical Recurrent Neural Networks 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.12.2017 
500 |a Date Revised 13.12.2017 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep convolutional neural networks (CNNs) have shown their great success on image classification. CNNs mainly consist of convolutional and pooling layers, both of which are performed on local image areas without considering the dependence among different image regions. However, such dependence is very important for generating explicit image representation. In contrast, recurrent neural networks (RNNs) are well known for their ability of encoding contextual information in sequential data, and they only require a limited number of network parameters. Thus, we proposed the hierarchical RNNs (HRNNs) to encode the contextual dependence in image representation. In HRNNs, each RNN layer focuses on modeling spatial dependence among image regions from the same scale but different locations. While the cross RNN scale connections target on modeling scale dependencies among regions from the same location but different scales. Specifically, we propose two RNN models: 1) hierarchical simple recurrent network (HSRN), which is fast and has low computational cost and 2) hierarchical long-short term memory recurrent network, which performs better than HSRN with the price of higher computational cost. In this paper, we integrate CNNs with HRNNs, and develop end-to-end convolutional hierarchical RNNs (C-HRNNs) for image classification. C-HRNNs not only utilize the discriminative representation power of CNNs, but also utilize the contextual dependence learning ability of our HRNNs. On four of the most challenging object/scene image classification benchmarks, our C-HRNNs achieve the state-of-the-art results on Places 205, SUN 397, and MIT indoor, and the competitive results on ILSVRC 2012 
650 4 |a Journal Article 
700 1 |a Shuai, Bing  |e verfasserin  |4 aut 
700 1 |a Wang, Gang  |e verfasserin  |4 aut 
700 1 |a Liu, Xiao  |e verfasserin  |4 aut 
700 1 |a Wang, Xingxing  |e verfasserin  |4 aut 
700 1 |a Wang, Bing  |e verfasserin  |4 aut 
700 1 |a Chen, Yushi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 7 vom: 15. Juli, Seite 2983-2996  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:7  |g day:15  |g month:07  |g pages:2983-2996 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2548241  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 7  |b 15  |c 07  |h 2983-2996