Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis

Copyright © 2017 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 112(2017) vom: 01. März, Seite 251-260
1. Verfasser: Xiaochuang, Cao (VerfasserIn)
Weitere Verfasser: Chu, Zhong, Lianfeng, Zhu, Junhua, Zhang, Hussain, Sajid, Lianghuan, Wu, Qianyu, Jin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Amino acids Cold stress Nitrogen form Photosynthesis Physiological trait Rice Nitrogen Isotopes Chlorophyll 1406-65-1 mehr... Carotenoids 36-88-4 Malondialdehyde 4Y8F71G49Q Catalase EC 1.11.1.6 Peroxidase EC 1.11.1.7 Superoxide Dismutase EC 1.15.1.1 Nitrogen N762921K75 Glycine TE7660XO1C
LEADER 01000naa a22002652 4500
001 NLM268195293
003 DE-627
005 20231224222213.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2017.01.008  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268195293 
035 |a (NLM)28107733 
035 |a (PII)S0981-9428(17)30016-5 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiaochuang, Cao  |e verfasserin  |4 aut 
245 1 0 |a Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.05.2017 
500 |a Date Revised 30.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2017 Elsevier Masson SAS. All rights reserved. 
520 |a To investigate the response of rice growth and photosynthesis to different nitrogen (N) sources under cold stress, hydroponic cultivation of rice was done in greenhouse, with glycine, ammonium, and nitrate as the sole N sources. The results demonstrate that exposure to low temperature reduced the rice biomass and leaf chlorophyll content, but their values in the glycine-treated plants were significantly higher than in the ammonium- and nitrate-treated plants. This might be attributed to the higher N uptake rate and root area and activity in the glycine-treated plants. The glycine-treated plants also maintained high contents of soluble proteins, soluble sugars, and proline as well as enhanced antioxidant enzyme activities to protect themselves against chilling injury. Under cold stress, reduced stomatal conductance (gs) and effective quantum efficiency of PSII (ΦPSII) significantly inhibited the leaf photosynthesis; however, glycine treatment alleviated these effects compared to the ammonium and nitrate treatments. The high non-photochemical quenching (qN) and excess energy dissipative energy (Ex) in the glycine-treated plants were beneficial for the release of extra energy, thereby, strengthening their photochemical efficiency. We, therefore, conclude that the strengthened cold tolerance of glycine-treated rice plants was closely associated with the higher accumulation of dry matter and photosynthesis through the up-regulation of N-uptake, and increase in the content of osmoprotectants, activities of the antioxidant defense enzymes, and photochemical efficiency. The results of the present study provide new ideas for improving the plant tolerance to extreme temperatures by nutrient resource management in the cold regions 
650 4 |a Journal Article 
650 4 |a Amino acids 
650 4 |a Cold stress 
650 4 |a Nitrogen form 
650 4 |a Photosynthesis 
650 4 |a Physiological trait 
650 4 |a Rice 
650 7 |a Nitrogen Isotopes  |2 NLM 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a Carotenoids  |2 NLM 
650 7 |a 36-88-4  |2 NLM 
650 7 |a Malondialdehyde  |2 NLM 
650 7 |a 4Y8F71G49Q  |2 NLM 
650 7 |a Catalase  |2 NLM 
650 7 |a EC 1.11.1.6  |2 NLM 
650 7 |a Peroxidase  |2 NLM 
650 7 |a EC 1.11.1.7  |2 NLM 
650 7 |a Superoxide Dismutase  |2 NLM 
650 7 |a EC 1.15.1.1  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
650 7 |a Glycine  |2 NLM 
650 7 |a TE7660XO1C  |2 NLM 
700 1 |a Chu, Zhong  |e verfasserin  |4 aut 
700 1 |a Lianfeng, Zhu  |e verfasserin  |4 aut 
700 1 |a Junhua, Zhang  |e verfasserin  |4 aut 
700 1 |a Hussain, Sajid  |e verfasserin  |4 aut 
700 1 |a Lianghuan, Wu  |e verfasserin  |4 aut 
700 1 |a Qianyu, Jin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 112(2017) vom: 01. März, Seite 251-260  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:112  |g year:2017  |g day:01  |g month:03  |g pages:251-260 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2017.01.008  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 112  |j 2017  |b 01  |c 03  |h 251-260