Effective Multi-Query Expansions : Collaborative Deep Networks for Robust Landmark Retrieval

Given a query photo issued by a user (q-user), the landmark retrieval is to return a set of photos with their landmarks similar to those of the query, while the existing studies on the landmark retrieval focus on exploiting geometries of landmarks for similarity matches between candidate photos and...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 3 vom: 15. März, Seite 1393-1404
Auteur principal: Wang, Yang (Auteur)
Autres auteurs: Lin, Xuemin, Wu, Lin, Zhang, Wenjie
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652 4500
001 NLM268154724
003 DE-627
005 20250221043627.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2655449  |2 doi 
028 5 2 |a pubmed25n0893.xml 
035 |a (DE-627)NLM268154724 
035 |a (NLM)28103558 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Yang  |e verfasserin  |4 aut 
245 1 0 |a Effective Multi-Query Expansions  |b Collaborative Deep Networks for Robust Landmark Retrieval 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Given a query photo issued by a user (q-user), the landmark retrieval is to return a set of photos with their landmarks similar to those of the query, while the existing studies on the landmark retrieval focus on exploiting geometries of landmarks for similarity matches between candidate photos and a query photo. We observe that the same landmarks provided by different users over social media community may convey different geometry information depending on the viewpoints and/or angles, and may, subsequently, yield very different results. In fact, dealing with the landmarks with low quality shapes caused by the photography of q-users is often nontrivial and has seldom been studied. In this paper, we propose a novel framework, namely, multi-query expansions, to retrieve semantically robust landmarks by two steps. First, we identify the top- k photos regarding the latent topics of a query landmark to construct multi-query set so as to remedy its possible low quality shape. For this purpose, we significantly extend the techniques of Latent Dirichlet Allocation. Then, motivated by the typical collaborative filtering methods, we propose to learn a collaborative deep networks-based semantically, nonlinear, and high-level features over the latent factor for landmark photo as the training set, which is formed by matrix factorization over collaborative user-photo matrix regarding the multi-query set. The learned deep network is further applied to generate the features for all the other photos, meanwhile resulting into a compact multi-query set within such space. Then, the final ranking scores are calculated over the high-level feature space between the multi-query set and all other photos, which are ranked to serve as the final ranking list of landmark retrieval. Extensive experiments are conducted on real-world social media data with both landmark photos together with their user information to show the superior performance over the existing methods, especially our recently proposed multi-query based mid-level pattern representation method [1] 
650 4 |a Journal Article 
700 1 |a Lin, Xuemin  |e verfasserin  |4 aut 
700 1 |a Wu, Lin  |e verfasserin  |4 aut 
700 1 |a Zhang, Wenjie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 3 vom: 15. März, Seite 1393-1404  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:3  |g day:15  |g month:03  |g pages:1393-1404 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2655449  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 3  |b 15  |c 03  |h 1393-1404