Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions

Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging, because it must cope with changing illumination conditions, variabilities in face orientation and in appearanc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 3 vom: 15. März, Seite 1428-1440
1. Verfasser: Drouard, Vincent (VerfasserIn)
Weitere Verfasser: Horaud, Radu, Deleforge, Antoine, Ba, Sileye, Evangelidis, Georgios
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268154635
003 DE-627
005 20231224222125.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2654165  |2 doi 
028 5 2 |a pubmed24n0893.xml 
035 |a (DE-627)NLM268154635 
035 |a (NLM)28103555 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Drouard, Vincent  |e verfasserin  |4 aut 
245 1 0 |a Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging, because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose to use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available data sets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods 
650 4 |a Journal Article 
700 1 |a Horaud, Radu  |e verfasserin  |4 aut 
700 1 |a Deleforge, Antoine  |e verfasserin  |4 aut 
700 1 |a Ba, Sileye  |e verfasserin  |4 aut 
700 1 |a Evangelidis, Georgios  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 3 vom: 15. März, Seite 1428-1440  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:3  |g day:15  |g month:03  |g pages:1428-1440 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2654165  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 3  |b 15  |c 03  |h 1428-1440