|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM268154465 |
003 |
DE-627 |
005 |
20231224222125.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2017.2654245
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0893.xml
|
035 |
|
|
|a (DE-627)NLM268154465
|
035 |
|
|
|a (NLM)28103547
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Nasihatkon, Behrooz
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Multiresolution Search of the Rigid Motion Space for Intensity-Based Registration
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.12.2018
|
500 |
|
|
|a Date Revised 20.12.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We study the relation between the correlation-based target functions of low-resolution and high-resolution intensity-based registration for the class of rigid transformations. Our results show that low-resolution target values can tightly bound the high-resolution target function in natural images. This can help with analyzing and better understanding the process of multiresolution image registration. It also gives a guideline for designing multiresolution algorithms in which the search space in higher resolution registration is restricted given the fitness values for lower resolution image pairs. To demonstrate this, we incorporate our multiresolution technique into a Lipschitz global optimization framework. We show that using the multiresolution scheme can result in large gains in the efficiency of such algorithms. The method is evaluated by applying to the problems of 2D registration, 3D rotation search, and the detection of reflective symmetry in 2D and 3D images
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Kahl, Fredrik
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 40(2018), 1 vom: 15. Jan., Seite 179-191
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:40
|g year:2018
|g number:1
|g day:15
|g month:01
|g pages:179-191
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2017.2654245
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 40
|j 2018
|e 1
|b 15
|c 01
|h 179-191
|