In situ data analytics and indexing of protein trajectories

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 38(2017), 16 vom: 15. Juni, Seite 1419-1430
1. Verfasser: Johnston, Travis (VerfasserIn)
Weitere Verfasser: Zhang, Boyu, Liwo, Adam, Crivelli, Silvia, Taufer, Michela
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. conformational metadata eigenvalues exascale computing high-performance computing protein trajectories Proteins
LEADER 01000caa a22002652 4500
001 NLM268060428
003 DE-627
005 20250221040142.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24729  |2 doi 
028 5 2 |a pubmed25n0893.xml 
035 |a (DE-627)NLM268060428 
035 |a (NLM)28093787 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Johnston, Travis  |e verfasserin  |4 aut 
245 1 0 |a In situ data analytics and indexing of protein trajectories 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.11.2019 
500 |a Date Revised 27.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2017 Wiley Periodicals, Inc. 
520 |a The transition toward exascale computing will be accompanied by a performance dichotomy. Computational peak performance will rapidly increase; I/O performance will either grow slowly or be completely stagnant. Essentially, the rate at which data are generated will grow much faster than the rate at which data can be read from and written to the disk. MD simulations will soon face the I/O problem of efficiently writing to and reading from disk on the next generation of supercomputers. This article targets MD simulations at the exascale and proposes a novel technique for in situ data analysis and indexing of MD trajectories. Our technique maps individual trajectories' substructures (i.e., α-helices, β-strands) to metadata frame by frame. The metadata captures the conformational properties of the substructures. The ensemble of metadata can be used for automatic, strategic analysis within a trajectory or across trajectories, without manually identify those portions of trajectories in which critical changes take place. We demonstrate our technique's effectiveness by applying it to 26.3k helices and 31.2k strands from 9917 PDB proteins and by providing three empirical case studies. © 2017 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a conformational metadata 
650 4 |a eigenvalues 
650 4 |a exascale computing 
650 4 |a high-performance computing 
650 4 |a protein trajectories 
650 7 |a Proteins  |2 NLM 
700 1 |a Zhang, Boyu  |e verfasserin  |4 aut 
700 1 |a Liwo, Adam  |e verfasserin  |4 aut 
700 1 |a Crivelli, Silvia  |e verfasserin  |4 aut 
700 1 |a Taufer, Michela  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 38(2017), 16 vom: 15. Juni, Seite 1419-1430  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:38  |g year:2017  |g number:16  |g day:15  |g month:06  |g pages:1419-1430 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24729  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2017  |e 16  |b 15  |c 06  |h 1419-1430