Tomato SlGGP-LIKE gene participates in plant responses to chilling stress and pathogenic infection
Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 112(2017) vom: 15. März, Seite 218-226 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article AsA Chilling stress Pathogenic infection SlGGP-LIKE Tomato Pigments, Biological Plant Proteins Reactive Oxygen Species Ascorbate Peroxidases mehr... |
Zusammenfassung: | Copyright © 2017 Elsevier Masson SAS. All rights reserved. Plants are always exposed to abiotic and biotic stresses which can adversely affect their growth and development. As an important antioxidant, AsA plays a vital role in plant defence against damage caused by stresses. In this study, we cloned a tomato GDP-L-galactose phosphorylase-like (SlGGP-LIKE) gene and investigated its role in resistance to abiotic and biotic stresses by using antisense transgenic (AS) tomato lines. The AsA content in AS plants was lower than that in WT plants. Under chilling stress, the growth of AS plants was inhibited significantly, and they yielded higher levels of ROS, REC and MDA but demonstrated weaker APX activity than that shown by WT plants. Additionally, the declined values of Pn, Fv/Fm, oxidisable P700, and D1 protein content of PSII in AS lines were significant. Furthermore, the effect on xanthophyll cycle of AS plants was more severe than that on WT plants, and the ratio of zeaxanthin (Z)/(V + A + Z) and (Z + 0.5 A)/(V + A + Z) in AS lines was lower than that in WT plants. In spite of chilling stress, under Pseudomonas syringae pv.tomato (Pst) DC3000 strain infection, AS plants showed lesser bacterial cell growth and dead cells than those shown by WT plants. This finding indicated that AS plants demonstrated stronger resistance against pathogenic infection. Results suggest that SlGGP-LIKE gene played an important role in plant defence against chilling stress and pathogenic infection |
---|---|
Beschreibung: | Date Completed 01.05.2017 Date Revised 07.12.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2017.01.006 |