Progressive Shape-Distribution-Encoder for Learning 3D Shape Representation

Since there are complex geometric variations with 3D shapes, extracting efficient 3D shape features is one of the most challenging tasks in shape matching and retrieval. In this paper, we propose a deep shape descriptor by learning shape distributions at different diffusion time via a progressive sh...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 3 vom: 07. März, Seite 1231-1242
1. Verfasser: Xie, Jin (VerfasserIn)
Weitere Verfasser: Zhu, Fan, Dai, Guoxian, Shao, Ling, Fang, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268048215
003 DE-627
005 20231224221925.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2651408  |2 doi 
028 5 2 |a pubmed24n0893.xml 
035 |a (DE-627)NLM268048215 
035 |a (NLM)28092555 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Jin  |e verfasserin  |4 aut 
245 1 0 |a Progressive Shape-Distribution-Encoder for Learning 3D Shape Representation 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Since there are complex geometric variations with 3D shapes, extracting efficient 3D shape features is one of the most challenging tasks in shape matching and retrieval. In this paper, we propose a deep shape descriptor by learning shape distributions at different diffusion time via a progressive shape-distribution-encoder (PSDE). First, we develop a shape distribution representation with the kernel density estimator to characterize the intrinsic geometry structures of 3D shapes. Then, we propose to learn a deep shape feature through an unsupervised PSDE. Specially, the unsupervised PSDE aims at modeling the complex non-linear transform of the estimated shape distributions between consecutive diffusion time. In order to characterize the intrinsic structures of 3D shapes more efficiently, we stack multiple PSDEs to form a network structure. Finally, we concatenate all neurons in the middle hidden layers of the unsupervised PSDE network to form an unsupervised shape descriptor for retrieval. Furthermore, by imposing an additional constraint on the outputs of all hidden layers, we propose a supervised PSDE to form a supervised shape descriptor. For each hidden layer, the similarity between a pair of outputs from the same class is as large as possible and the similarity between a pair of outputs from different classes is as small as possible. The proposed method is evaluated on three benchmark 3D shape data sets with large geometric variations, i.e., McGill, SHREC'10 ShapeGoogle, and SHREC'14 Human data sets, and the experimental results demonstrate the superiority of the proposed method to the existing approaches 
650 4 |a Journal Article 
700 1 |a Zhu, Fan  |e verfasserin  |4 aut 
700 1 |a Dai, Guoxian  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
700 1 |a Fang, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 3 vom: 07. März, Seite 1231-1242  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:3  |g day:07  |g month:03  |g pages:1231-1242 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2651408  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 3  |b 07  |c 03  |h 1231-1242