Discriminative Multi-View Interactive Image Re-Ranking

Given an unreliable visual patterns and insufficient query information, content-based image retrieval is often suboptimal and requires image re-ranking using auxiliary information. In this paper, we propose a discriminative multi-view interactive image re-ranking (DMINTIR), which integrates user rel...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 7 vom: 07. Juli, Seite 3113-3127
1. Verfasser: Li, Jun (VerfasserIn)
Weitere Verfasser: Xu, Chang, Yang, Wankou, Sun, Changyin, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268048096
003 DE-627
005 20231224221925.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2651379  |2 doi 
028 5 2 |a pubmed24n0893.xml 
035 |a (DE-627)NLM268048096 
035 |a (NLM)28092544 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jun  |e verfasserin  |4 aut 
245 1 0 |a Discriminative Multi-View Interactive Image Re-Ranking 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Given an unreliable visual patterns and insufficient query information, content-based image retrieval is often suboptimal and requires image re-ranking using auxiliary information. In this paper, we propose a discriminative multi-view interactive image re-ranking (DMINTIR), which integrates user relevance feedback capturing users' intentions and multiple features that sufficiently describe the images. In DMINTIR, heterogeneous property features are incorporated in the multi-view learning scheme to exploit their complementarities. In addition, a discriminatively learned weight vector is obtained to reassign updated scores and target images for re-ranking. Compared with other multi-view learning techniques, our scheme not only generates a compact representation in the latent space from the redundant multi-view features but also maximally preserves the discriminative information in feature encoding by the large-margin principle. Furthermore, the generalization error bound of the proposed algorithm is theoretically analyzed and shown to be improved by the interactions between the latent space and discriminant function learning. Experimental results on two benchmark data sets demonstrate that our approach boosts baseline retrieval quality and is competitive with the other state-of-the-art re-ranking strategies 
650 4 |a Journal Article 
700 1 |a Xu, Chang  |e verfasserin  |4 aut 
700 1 |a Yang, Wankou  |e verfasserin  |4 aut 
700 1 |a Sun, Changyin  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 7 vom: 07. Juli, Seite 3113-3127  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:7  |g day:07  |g month:07  |g pages:3113-3127 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2651379  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 7  |b 07  |c 07  |h 3113-3127