Robust and Discriminative Labeling for Multi-Label Active Learning Based on Maximum Correntropy Criterion

Multi-label learning draws great interests in many real world applications. It is a highly costly task to assign many labels by the oracle for one instance. Meanwhile, it is also hard to build a good model without diagnosing discriminative labels. Can we reduce the label costs and improve the abilit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 4 vom: 07. Apr., Seite 1694-1707
1. Verfasser: Du, Bo (VerfasserIn)
Weitere Verfasser: Wang, Zengmao, Zhang, Lefei, Zhang, Liangpei, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article