Wideband 2-D Array Design Optimization With Fabrication Constraints for 3-D US Imaging

Ultrasound (US) 2-D arrays are of increasing interest due to their electronic steering capability to investigate 3-D regions without requiring any probe movement. These arrays are typically populated by thousands of elements that, ideally, should be individually driven by the companion scanner. Sinc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 64(2017), 1 vom: 07. Jan., Seite 108-125
1. Verfasser: Roux, Emmanuel (VerfasserIn)
Weitere Verfasser: Ramalli, Alessandro, Liebgott, Herve, Cachard, Christian, Robini, Marc C, Tortoli, Piero
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM26804774X
003 DE-627
005 20231224221924.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2016.2614776  |2 doi 
028 5 2 |a pubmed24n0893.xml 
035 |a (DE-627)NLM26804774X 
035 |a (NLM)28092506 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Roux, Emmanuel  |e verfasserin  |4 aut 
245 1 0 |a Wideband 2-D Array Design Optimization With Fabrication Constraints for 3-D US Imaging 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Ultrasound (US) 2-D arrays are of increasing interest due to their electronic steering capability to investigate 3-D regions without requiring any probe movement. These arrays are typically populated by thousands of elements that, ideally, should be individually driven by the companion scanner. Since this is not convenient, the so-called microbeamforming methods, yielding a prebeamforming stage performed in the probe handle by suitable custom integrated circuits, have so far been implemented in a few commercial high-end scanners. A possible approach to implement relatively cheap and efficient 3-D US imaging systems is using 2-D sparse arrays in which a limited number of elements can be coupled to an equal number of independent transmit/receive channels. In order to obtain US beams with adequate characteristics all over the investigated volume, the layout of such arrays must be carefully designed. This paper provides guidelines to design, by using simulated annealing optimization, 2-D sparse arrays capable of fitting specific applications or fabrication/implementation constraints. In particular, an original energy function based on multidepth 3-D analysis of the beam pattern is also exploited. A tutorial example is given, addressed to find the N e elements that should be activated in a 2-D fully populated array to yield efficient acoustic radiating performance over the entire volume. The proposed method is applied to a 32 ×32 array centered at 3 MHz to select the 128, 192, and 256 elements that provide the best acoustic performance. It is shown that the 256-element optimized array yields sidelobe levels even lower (by 5.7 dB) than that of the reference 716-element circular and (by 10.3 dB) than that of the reference 1024-element array 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ramalli, Alessandro  |e verfasserin  |4 aut 
700 1 |a Liebgott, Herve  |e verfasserin  |4 aut 
700 1 |a Cachard, Christian  |e verfasserin  |4 aut 
700 1 |a Robini, Marc C  |e verfasserin  |4 aut 
700 1 |a Tortoli, Piero  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 64(2017), 1 vom: 07. Jan., Seite 108-125  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:64  |g year:2017  |g number:1  |g day:07  |g month:01  |g pages:108-125 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2016.2614776  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 64  |j 2017  |e 1  |b 07  |c 01  |h 108-125