Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae

© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 68(2017), 5 vom: 01. Feb., Seite 1169-1183
1. Verfasser: Shubchynskyy, Volodymyr (VerfasserIn)
Weitere Verfasser: Boniecka, Justyna, Schweighofer, Alois, Simulis, Justinas, Kvederaviciute, Kotryna, Stumpe, Michael, Mauch, Felix, Balazadeh, Salma, Mueller-Roeber, Bernd, Boutrot, Freddy, Zipfel, Cyril, Meskiene, Irute
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Callose MAPK MAPK phosphatase PAMP PP2C phosphatase Pseudomonas syringae defense genes salicylic acid transcription factors. mehr... Arabidopsis Proteins Mitogen-Activated Protein Kinases EC 2.7.11.24 AP2C1 protein, Arabidopsis EC 3.1.3.16 Phosphoprotein Phosphatases MKP1 protein, Arabidopsis EC 3.1.3.48 Protein Tyrosine Phosphatases
LEADER 01000naa a22002652 4500
001 NLM267768044
003 DE-627
005 20231224221405.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erw485  |2 doi 
028 5 2 |a pubmed24n0892.xml 
035 |a (DE-627)NLM267768044 
035 |a (NLM)28062592 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shubchynskyy, Volodymyr  |e verfasserin  |4 aut 
245 1 0 |a Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.11.2017 
500 |a Date Revised 29.01.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
520 |a Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance 
650 4 |a Journal Article 
650 4 |a Callose 
650 4 |a MAPK 
650 4 |a MAPK phosphatase 
650 4 |a PAMP 
650 4 |a PP2C phosphatase 
650 4 |a Pseudomonas syringae 
650 4 |a defense genes 
650 4 |a salicylic acid 
650 4 |a transcription factors. 
650 7 |a Arabidopsis Proteins  |2 NLM 
650 7 |a Mitogen-Activated Protein Kinases  |2 NLM 
650 7 |a EC 2.7.11.24  |2 NLM 
650 7 |a AP2C1 protein, Arabidopsis  |2 NLM 
650 7 |a EC 3.1.3.16  |2 NLM 
650 7 |a Phosphoprotein Phosphatases  |2 NLM 
650 7 |a EC 3.1.3.16  |2 NLM 
650 7 |a MKP1 protein, Arabidopsis  |2 NLM 
650 7 |a EC 3.1.3.48  |2 NLM 
650 7 |a Protein Tyrosine Phosphatases  |2 NLM 
650 7 |a EC 3.1.3.48  |2 NLM 
700 1 |a Boniecka, Justyna  |e verfasserin  |4 aut 
700 1 |a Schweighofer, Alois  |e verfasserin  |4 aut 
700 1 |a Simulis, Justinas  |e verfasserin  |4 aut 
700 1 |a Kvederaviciute, Kotryna  |e verfasserin  |4 aut 
700 1 |a Stumpe, Michael  |e verfasserin  |4 aut 
700 1 |a Mauch, Felix  |e verfasserin  |4 aut 
700 1 |a Balazadeh, Salma  |e verfasserin  |4 aut 
700 1 |a Mueller-Roeber, Bernd  |e verfasserin  |4 aut 
700 1 |a Boutrot, Freddy  |e verfasserin  |4 aut 
700 1 |a Zipfel, Cyril  |e verfasserin  |4 aut 
700 1 |a Meskiene, Irute  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 68(2017), 5 vom: 01. Feb., Seite 1169-1183  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:68  |g year:2017  |g number:5  |g day:01  |g month:02  |g pages:1169-1183 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erw485  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 68  |j 2017  |e 5  |b 01  |c 02  |h 1169-1183