Regional variation in the temperature sensitivity of soil organic matter decomposition in China's forests and grasslands

© 2017 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 23(2017), 8 vom: 15. Aug., Seite 3393-3402
1. Verfasser: Liu, Yuan (VerfasserIn)
Weitere Verfasser: He, Nianpeng, Zhu, Jianxing, Xu, Li, Yu, Guirui, Niu, Shuli, Sun, Xiaomin, Wen, Xuefa
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article decomposition forest grassland regional variation soil organic matter temperature sensitivity Soil Carbon 7440-44-0
LEADER 01000naa a22002652 4500
001 NLM267705808
003 DE-627
005 20231224221252.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.13613  |2 doi 
028 5 2 |a pubmed24n0892.xml 
035 |a (DE-627)NLM267705808 
035 |a (NLM)28055123 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yuan  |e verfasserin  |4 aut 
245 1 0 |a Regional variation in the temperature sensitivity of soil organic matter decomposition in China's forests and grasslands 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.10.2017 
500 |a Date Revised 02.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2017 John Wiley & Sons Ltd. 
520 |a How to assess the temperature sensitivity (Q10 ) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10 . The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10 , were predicted to be more sensitive to climate change under the scenario of global warming 
650 4 |a Journal Article 
650 4 |a decomposition 
650 4 |a forest 
650 4 |a grassland 
650 4 |a regional variation 
650 4 |a soil organic matter 
650 4 |a temperature sensitivity 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a He, Nianpeng  |e verfasserin  |4 aut 
700 1 |a Zhu, Jianxing  |e verfasserin  |4 aut 
700 1 |a Xu, Li  |e verfasserin  |4 aut 
700 1 |a Yu, Guirui  |e verfasserin  |4 aut 
700 1 |a Niu, Shuli  |e verfasserin  |4 aut 
700 1 |a Sun, Xiaomin  |e verfasserin  |4 aut 
700 1 |a Wen, Xuefa  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 23(2017), 8 vom: 15. Aug., Seite 3393-3402  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:8  |g day:15  |g month:08  |g pages:3393-3402 
856 4 0 |u http://dx.doi.org/10.1111/gcb.13613  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 8  |b 15  |c 08  |h 3393-3402