Production, amplification and systemic propagation of redox messengers in plants? The phloem can do it all!

© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 214(2017), 2 vom: 15. Apr., Seite 554-560
1. Verfasser: Gaupels, Frank (VerfasserIn)
Weitere Verfasser: Durner, Jörg, Kogel, Karl-Heinz
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Review abiotic stress calcium hydrogen peroxide (H2O2) nitric oxide (NO) pathogen resistance phloem systemic signalling wound response mehr... Reactive Oxygen Species Nitric Oxide 31C4KY9ESH
Beschreibung
Zusammenfassung:© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Rapid long-distance signalling is an emerging topic in plant research, and is particularly associated with responses to biotic and abiotic stress. Systemic acquired resistance (SAR) to pathogen attack is dependent on nitric oxide (NO) and reactive oxygen species (ROS) such as hydrogen peroxide (H2 O2 ). By comparison, systemic wound responses (SWRs) and systemic acquired acclimation (SAA) to abiotic stress encounters are triggered by rapid waves of H2 O2 , calcium and electrical signalling. Efforts have been made to decipher the relationship between redox messengers, calcium and other known systemic defence signals. Less is known about possible routes of signal transduction throughout the entire plant. Previously, the phloem has been suggested to be a transport conduit for mobile signals inducing SAR, SWR and SAA. This review highlights the role of the phloem in systemic redox signalling by NO and ROS. A not yet identified calcium-dependent NO source and S-nitrosoglutathione reductase are candidate regulators of NO homeostasis in the phloem, whereas ROS concentrations are controlled by NADPH oxidases and the H2 O2 -scavenging enzyme ascorbate peroxidase. Possible amplification mechanisms in phloem-mediated systemic redox signalling are discussed
Beschreibung:Date Completed 22.02.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.14399